European Commission logo
English English
CORDIS - EU research results

HIGH speed civil Tilt Rotor wInd tunnel Project

Project description

Taking next-generation civil tiltrotor aircraft to new heights

The aerodynamic configuration of the next-generation civil tiltrotor (NGCTR) must be characterised at high speeds by dedicated wind tunnel tests. Tiltrotor aircraft combine the features of a helicopter and a conventional aeroplane. Building on completed and ongoing projects, the EU-funded HIGHTRIP project aims to design a new model and reuse the newly developed empennages (tails). The precise model scale will come from sizing the empennage to the NGCTR technology demonstrator geometry. The project will design and manufacture a new fuselage and wing for the model. Finally, it will analyse wind tunnel data ahead of the NGCTR technology demonstrator’s full-scale deployment.


The aerodynamic configuration of the Next Generation Civil Tilt Rotor needs to be characterized at high speed by a dedicated wind tunnel test campaign.
HIGHTRIP will design a new model based on NICETRIP design philosophy, re-using the new (instrumented) NEXTTRIP empennages. If complete re-use is not feasible, basic design, balances and remote controls will be re-used to limit the costs. Consequently, the exact model scale will result from sizing NEXTTRIP empennage to the NGCTR-TD geometry.
To provide full scale Reynolds number data and perform aerodynamic characteristics analysis at high speeds and full scale conditions, extrapolation to full scale Reynolds numbers will be done by CFD.
The HIGHTRIP project proposes to use the ONERA S1MA large wind tunnel facility, to enable the application of remotely controlled surfaces and nacelles with small wind tunnel interference covering the complete Mach envelop. Within the FP6 project NICETRIP a 1/5th scale full-span, powered wind tunnel model has been designed and tested. This model will be reused and equipped with two new T- and V- shaped empennage configurations based on the NGCTR-TD and tested at low speed conditions within the project NEXTTRIP, managed by NLR. The design and manufacturing of the new NEXTTRIP empennages and especially their remote controls and instrumentation will envisage usage for higher speeds in the HIGHTRIP project.
HIGHTRIP partners, NLR, ILOT, PW and ST will work together during 45 months for a total grant request of 3,495,243€, to design and manufacture new fuselage and new wing in the HIGHTRIP model, based on the NEXTTRIP and NICETRIP parts.
NLR will subcontract the non-powered high speed wind tunnel test to ONERA-S1MA, resulting in a data package (on model scale) corrected for wind tunnel effects. NLR will analyse the wind tunnel data and perform the required extrapolation to the full scale Reynolds numbers to support the topic manager for full scale developmenst of the NGCTR TD.


Net EU contribution
€ 2 796 868,75
1059 CM Amsterdam

See on map

West-Nederland Noord-Holland Groot-Amsterdam
Activity type
Research Organisations
Total cost
€ 2 796 868,75

Participants (3)