Project description
A bright idea for bioprinting enhances feature resolution, processing time and flexibility
Additive manufacturing, also called 3D printing, had its start in the 1980s. With the emergence of commercial 3D printers and compatible computer-aided design (CAD) tools, 3D printing revolutionised prototyping and small lot production. It also led to the creation of 3D bioprinting. 3D bioprinting uses cells and other biocompatible materials as 'inks' to create living structures that mimic the behaviours of tissues and organs. The EU-funded BRIGHTER project plans to advance current state-of-the-art 3D bioprinting with significant enhancements in temporal and spatial resolution by employing a unique top-down approach rather than the conventional bottom-up one. Its photo-crosslinking technology will also enable tuneable matrix stiffness, enhancing opportunities for research and business.
Objective
Engineered tissues are key elements in both in vitro and in vivo applications, strongly impacting the academy, pharma and clinical sectors. Bioprinting is considered the most promising method to produce such engineered tissues. However, current bioprinting methods are severely limited by both insufficient speed and spatial resolution. Long printing times decrease cell viability, while poor spatial resolution fails to recreate the heterogeneous nature of native tissues. BRIGHTER will develop a new bioprinting technology able to produce tissue surrogates with high spatial resolution at high printing speed using an original top-down lithography approach, in contrast with current bottom-up, layer-by-layer bioprinting methods. BRIGHTER will combine high-speed light-sheet illumination and high-resolution digital photomasks to selectively photocrosslink cell-laden hydrogels in confined voxels and produce three-dimensional complex geometries. This process will enable the bioprinting of key anatomical microfeatures of tissue such as invaginations, evaginations or wavy morphologies. It will also incorporate hollow vascular structures while maintaining tissue mechanical integrity without the need of additional sacrificial material. As a remarkable feature, matrix crosslinking density can be fine-tuned using BRIGHTER’s approach, allowing the fabrication of cellular compartments requiring specific matrix stiffness such as stem cell niches. The proof-of-concept application will be bioprinting viable engineered skin tissues exploiting the key features of the BRIGHTER device: skin appendix (hair follicles, sweat glands), stem cell niches and a vascular network. The ultimate goal is to provide a superior alternative to state-or-the art 3D bioprinting with a disruptive bioprinting technology that would create new scientific and business opportunities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08028 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.