Description du projet
Une brillante idée pour la bio-impression qui améliore la résolution, le temps de traitement et la flexibilité
La fabrication additive, également appelée impression 3D, a connu ses débuts dans les années 1980. Avec l’émergence des imprimantes 3D commerciales et des outils de conception assistée par ordinateur (CAO) compatibles, l’impression 3D a révolutionné le prototypage et la production de petits lots. Elle a également conduit à la création de la bio-impression 3D. La bio-impression 3D utilise des cellules et d’autres matériaux biocompatibles en guise «d’encres» pour créer des structures vivantes qui imitent les comportements des tissus et des organes. Le projet BRIGHTER, financé par l’UE, entend faire progresser la bio-impression 3D actuelle, à la pointe de la technologie, en améliorant considérablement la résolution temporelle et spatiale grâce à une approche descendante unique au lieu de l’approche ascendante classique. Sa technologie de photoréticulation permettra également d’ajuster la rigidité de la matrice, ce qui améliorera les perspectives pour la recherche et les entreprises.
Objectif
Engineered tissues are key elements in both in vitro and in vivo applications, strongly impacting the academy, pharma and clinical sectors. Bioprinting is considered the most promising method to produce such engineered tissues. However, current bioprinting methods are severely limited by both insufficient speed and spatial resolution. Long printing times decrease cell viability, while poor spatial resolution fails to recreate the heterogeneous nature of native tissues. BRIGHTER will develop a new bioprinting technology able to produce tissue surrogates with high spatial resolution at high printing speed using an original top-down lithography approach, in contrast with current bottom-up, layer-by-layer bioprinting methods. BRIGHTER will combine high-speed light-sheet illumination and high-resolution digital photomasks to selectively photocrosslink cell-laden hydrogels in confined voxels and produce three-dimensional complex geometries. This process will enable the bioprinting of key anatomical microfeatures of tissue such as invaginations, evaginations or wavy morphologies. It will also incorporate hollow vascular structures while maintaining tissue mechanical integrity without the need of additional sacrificial material. As a remarkable feature, matrix crosslinking density can be fine-tuned using BRIGHTER’s approach, allowing the fabrication of cellular compartments requiring specific matrix stiffness such as stem cell niches. The proof-of-concept application will be bioprinting viable engineered skin tissues exploiting the key features of the BRIGHTER device: skin appendix (hair follicles, sweat glands), stem cell niches and a vascular network. The ultimate goal is to provide a superior alternative to state-or-the art 3D bioprinting with a disruptive bioprinting technology that would create new scientific and business opportunities.
Champ scientifique
Mots‑clés
Programme(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
08028 Barcelona
Espagne