Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Science and technology for the explanation of AI decision making

Descrizione del progetto

Giustificare il processo decisionale dell’IA

La Scatola Nera dell’Intelligenza Artificiale (IA) combinata con l’apprendimento automatico (ML) è ampiamente utilizzata nel processo decisionale automatizzato. Aiuta a gestire i dati e a elaborare rapidamente le decisioni, ma queste decisioni automatizzate possono provocare distorsioni dei dati raccolti o essere inique. Inoltre, non possono essere né spiegate né trasparenti, privando i clienti del diritto a una spiegazione. Il progetto XAI, finanziato dall’UE, mira a fornire spiegazioni significative per i sistemi IA/ML. La ricerca si concentra su come progettare la trasparenza nei modelli ML, come produrre spiegazioni controllate delle scatole nere, come rivelare i dati e gli algoritmi usati, l’iniquità e le relazioni causali nei processi. Il progetto formulerà anche standard etici e legali per l’IA.

Obiettivo

A wealthy friend of mine asks for a vacation credit card to his bank, to discover that the credit he is offered is very low. The bank teller cannot explain why. My stubborn friend continues his quest for explanation up to the bank executives, to discover that an algorithm lowered his credit score. Why? After a long investigation, it turns out that the reason is: bad credit by the former owner of my friends house.

Black box AI systems for automated decision making, often based on ML over (big) data, map a users features into a class or a score without explaining why. This is problematic for lack of transparency, but also for possible biases inherited by the algorithms from human prejudices and collection artefacts hidden in the training data, which may lead to unfair or wrong decisions.

I strive for solutions of the urgent challenge of how to construct meaningful explanations of opaque AI/ML systems, introducing the local-to-global framework for black box explanation, articulated along 3 lines: a) the language for explanations in terms of expressive logic rules, with statistical and causal interpretation; b) the inference of local explanations for revealing the decision rationale for a specific case; c), the bottom-up generalization of many local explanations into simple global ones. An intertwined line of research will investigate both causal explanations, i.e. models that capture the causal relationships among the features and the decision, and mechanistic/physical models of complex system physics, that capture the data generation mechanism behind specific deep learning models.
I will also develop: an infrastructure for benchmarking, for the users' assessment of the explanations and the crowdsensing of observational decision data; an ethical-legal framework, for compliance and impact of our results on legal standards and on the right of explanation provisions of the GDPR; case studies in explanation-by-design, with a priority in health and fraud detection.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2018-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

SCUOLA NORMALE SUPERIORE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 915 500,00
Indirizzo
PIAZZA DEI CAVALIERI 7
56126 PISA
Italia

Mostra sulla mappa

Regione
Centro (IT) Toscana Pisa
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 915 500,00

Beneficiari (3)

Il mio fascicolo 0 0