CORDIS - Forschungsergebnisse der EU
CORDIS

Yoctosecond imaging of QCD collectivity using jet observables

Projektbeschreibung

Die Entstehung des Urzustands der Materie im Universum im Blick

Um ein Proton zu durchqueren, braucht das Licht drei Yoktosekunden. Diese unvorstellbar kurze Zeit reicht für Schwerionenkollisionen im Large Hadron Collider, dem Teilchenbeschleuniger am CERN, aus. Hier interagieren Quarks und Gluonen miteinander und bilden das Quark-Gluon-Plasma, das Mikrosekunden nach dem Urknall das gesamte Universum durchdrungen hat. Untersuchungen zeigen, dass das Plasma während der ersten fünf Yoktosekunden nach Elementarteilchenkollisionen gebildet wird. Über diese Plasmabildung ist wenig bekannt. Im Rahmen des EU-finanzierten Projekts YoctoLHC werden hochenergetische Teilchenstrahlen eingesetzt, um ein Zeitbild der ersten zehn Yoktosekunden nach der Kollision zu erstellen. Die Projektergebnisse werden Licht in diese Komplexität bringen, die sich aus den grundlegendsten, in der Natur vorkommenden Elementarteilchen ergibt.

Ziel

QCD is the only sector of the Standard Model where the exploration of the first levels of complexity, built from fundamental interactions at the quantum level, is experimentally feasible. An outstanding example is the thermalised state of QCD matter formed when heavy atomic nuclei are smashed in particle colliders. Systematic experimental studies, carried out in the last two decades, overwhelmingly support the picture of a deconfined state of matter, which behaves as a nearly perfect fluid, formed in a very short time, less than 5 yoctoseconds. The mechanism that so efficiently brings the initial out-of-equilibrium state into a thermalised system is, however, largely unknown. Most surprisingly, LHC experiments have found that collisions of small systems, i.e. proton-proton or proton-lead, seem to indicate the presence of a tiny drop of this fluid in events with a large number of produced particles. These systems have sizes of 1 fm or less, or time-scales of less than 3 ys. To add to the puzzle, jet quenching, the modifications of jet properties due to interactions with the medium, has not been observed in these small systems, while jet quenching and thermalisation are expected to be controlled by the same dynamics. Present experimental tools have limited sensitivity to the actual process of thermalisation. To solve these long-standing questions we propose, as a completely novel strategy, using jet observables to directly access the first yoctoseconds of the collision. This strategy needs developments well beyond the state-of-the-art in three subjects: i) novel theoretical descriptions of the initial stages of the collision — the first 5 ys; ii) jet quenching theory for yoctosecond precision, with new techniques to couple the jet to the surrounding matter and novel parton shower evolution; and iii) jet quenching tools for the 2020’s, where completely novel jet observables will be devised with a focus on determining the initial stages of the collision.

Finanzierungsplan

ERC-ADG - Advanced Grant

Gastgebende Einrichtung

UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Netto-EU-Beitrag
€ 1 693 687,50
Adresse
COLEXIO DE SAN XEROME PRAZA DO OBRADOIRO S/N
15782 Santiago De Compostela
Spanien

Auf der Karte ansehen

Region
Noroeste Galicia A Coruña
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 693 687,50

Begünstigte (3)