Project description
Probabilistic methods help unify quantum mechanics and general relativity
The Standard Model of particle physics has several acknowledged gaps, one of which is that it does not account for the force of gravity. Quantum gravity attempts to reconcile quantum mechanics and general relativity via a quantum description of gravity as packets of magnetism. Quantum field theory (QFT) is the mathematical framework for modern particle physics. Whereas quantum mechanics deals with the behaviour of one or a few microscopic particles, QFT can be used to describe quantum systems with many particles, so-called many-body problems. Through an in-depth exploration of probabilistic approaches in QFT, the EU-funded QuantGMC project is developing probabilistic methods that will help us better understand the theory of quantum gravity.
Objective
The proposed goal for our research program is to attack some mathematical problems arising in constructive two dimensional Quantum Field Theory (QFT) and two dimensional Quantum Gravity (QG) using probabilistic methods.
The physical theory of Quantum Gravity has the aim of providing a unified framework which encompasses the two descriptions of nature provided by quantum mechanics and general relativity.
The two dimensional version of the theory is more tractable than the one corresponding to the four dimensional space-time and thus is used as a testing workbench to understand higher dimensional physics.
In order to reinforce the rigourous mathematical understanding of this theory, we wish to explore two particular aspects of QFT which are based on a probabilistic construction called Gaussian Multiplicative chaos. The objectives of QuantGMC are:
A- To obtain an explicit construction of canonical random surfaces equipped with a structure of Kähler manifold. In technical terms this corresponds to the construction of a path integral corresponding to the coupling of Liouville functional and the Mabuchi K-energy on 2D manifold of arbitrary genus.
B- To enhance the current understanding of the Quantum Sine-Gordon model, which can be interpreted as a random version of the Sine-Gordon equation. This model is conjectured to undergo an infinite sequence of collapse transitions when the inverse temperature increases. However up to now, rigorous renormalization theory of the model can only allow to witness the three first of these transitions. We plan to use Gaussian Multiplicative Chaos to provide a more efficient renormalization scheme which would allow to account for all the transitions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences relativistic mechanics
- natural sciences physical sciences quantum physics quantum field theory
- natural sciences physical sciences theoretical physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
13284 Marseille
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.