Descripción del proyecto
Métodos probabilísticos para aunar la mecánica cuántica y la relatividad general
El modelo estándar de la física de partículas posee varias lagunas reconocidas, una de las cuales es que no tiene en cuenta la fuerza de la gravedad. La gravedad cuántica supone un intento por reconciliar la mecánica cuántica y la relatividad general a través de una descripción cuántica de la gravedad como paquetes de magnetismo. La teoría cuántica de campos es el marco matemático de la física de partículas moderna. Mientras que la mecánica cuántica se ocupa del comportamiento de una o unas pocas partículas microscópicas, la teoría cuántica de campos se puede utilizar para describir sistemas cuánticos con muchas partículas, los llamados problemas de muchos cuerpos. Mediante una exploración en profundidad de los métodos probabilísticos de la teoría cuántica de campos, el proyecto financiado con fondos europeos QuantGMC trabaja en el desarrollo de métodos probabilísticos que ayuden a conocer mejor la teoría de la gravedad cuántica.
Objetivo
The proposed goal for our research program is to attack some mathematical problems arising in constructive two dimensional Quantum Field Theory (QFT) and two dimensional Quantum Gravity (QG) using probabilistic methods.
The physical theory of Quantum Gravity has the aim of providing a unified framework which encompasses the two descriptions of nature provided by quantum mechanics and general relativity.
The two dimensional version of the theory is more tractable than the one corresponding to the four dimensional space-time and thus is used as a testing workbench to understand higher dimensional physics.
In order to reinforce the rigourous mathematical understanding of this theory, we wish to explore two particular aspects of QFT which are based on a probabilistic construction called Gaussian Multiplicative chaos. The objectives of QuantGMC are:
A- To obtain an explicit construction of canonical random surfaces equipped with a structure of Kähler manifold. In technical terms this corresponds to the construction of a path integral corresponding to the coupling of Liouville functional and the Mabuchi K-energy on 2D manifold of arbitrary genus.
B- To enhance the current understanding of the Quantum Sine-Gordon model, which can be interpreted as a random version of the Sine-Gordon equation. This model is conjectured to undergo an infinite sequence of collapse transitions when the inverse temperature increases. However up to now, rigorous renormalization theory of the model can only allow to witness the three first of these transitions. We plan to use Gaussian Multiplicative Chaos to provide a more efficient renormalization scheme which would allow to account for all the transitions.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales ciencias físicas mecánica relativista
- ciencias naturales ciencias físicas física cuántica teoría cuántica de campos
- ciencias naturales ciencias físicas física teórica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF-EF-ST - Standard EF
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2018
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
13284 Marseille
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.