Opis projektu
Metody probabilistyczne pomagają w unifikacji mechaniki kwantowej z ogólną teorią względności
Model standardowy ma kilka znanych luk, z których jedna to nieuwzględnianie występowania siły grawitacji. Grawitacja kwantowa to obszar nauki starający się pogodzić mechanikę kwantową z ogólną teorią względności poprzez wprowadzenie kwantowego opisu grawitacji jako pakietów oddziaływania magnetycznego. Kwantowa teoria pola to matematyczna podstawa współczesnej fizyki cząstek elementarnych. Podczas gdy mechanika kwantowa zajmuje się opisem zachowań pojedynczych i niedużych cząstek, kwantową teorią pola można opisywać układy kwantowe zawierające wiele cząstek, czyli rozwiązywać za jej pomocą tak zwane zagadnienia wielu ciał. Dzięki dogłębnej analizie podejść probabilistycznych w kwantowej teorii pola, prowadzonej w ramach finansowanego ze środków UE projektu QuantGMC, może uda się opracować metody probabilistyczne, które pomogą nam lepiej zrozumieć teorię kwantowej grawitacji.
Cel
The proposed goal for our research program is to attack some mathematical problems arising in constructive two dimensional Quantum Field Theory (QFT) and two dimensional Quantum Gravity (QG) using probabilistic methods.
The physical theory of Quantum Gravity has the aim of providing a unified framework which encompasses the two descriptions of nature provided by quantum mechanics and general relativity.
The two dimensional version of the theory is more tractable than the one corresponding to the four dimensional space-time and thus is used as a testing workbench to understand higher dimensional physics.
In order to reinforce the rigourous mathematical understanding of this theory, we wish to explore two particular aspects of QFT which are based on a probabilistic construction called Gaussian Multiplicative chaos. The objectives of QuantGMC are:
A- To obtain an explicit construction of canonical random surfaces equipped with a structure of Kähler manifold. In technical terms this corresponds to the construction of a path integral corresponding to the coupling of Liouville functional and the Mabuchi K-energy on 2D manifold of arbitrary genus.
B- To enhance the current understanding of the Quantum Sine-Gordon model, which can be interpreted as a random version of the Sine-Gordon equation. This model is conjectured to undergo an infinite sequence of collapse transitions when the inverse temperature increases. However up to now, rigorous renormalization theory of the model can only allow to witness the three first of these transitions. We plan to use Gaussian Multiplicative Chaos to provide a more efficient renormalization scheme which would allow to account for all the transitions.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze nauki fizyczne mechanika relatywistyczna
- nauki przyrodnicze nauki fizyczne fizyka kwantowa kwantowa teoria pola
- nauki przyrodnicze nauki fizyczne fizyka teoretyczna
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF-EF-ST - Standard EF
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2018
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
13284 Marseille
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.