Description du projet
Des méthodes probabilistes contribuent à unifier la mécanique quantique et la relativité générale
Le modèle standard de la physique des particules présente plusieurs lacunes reconnues, dont l’une concerne le fait qu’il ne prend pas en compte la force de gravité. La gravité quantique tente de réconcilier la mécanique quantique et la relativité générale par une description quantique de la gravité sous forme de paquets de magnétisme. La théorie quantique des champs (QFT) est le cadre mathématique de la physique moderne des particules. Alors que la mécanique quantique traite du comportement d’une ou de quelques particules microscopiques, la QFT peut être utilisée pour décrire des systèmes quantiques comportant de nombreuses particules, ce que l’on appelle communément des problèmes à N corps. Par le biais d’une exploration approfondie des approches probabilistes en QFT, le projet QuantGMC, financé par l’UE, développe des méthodes probabilistes qui nous aideront à mieux comprendre la théorie de la gravité quantique.
Objectif
The proposed goal for our research program is to attack some mathematical problems arising in constructive two dimensional Quantum Field Theory (QFT) and two dimensional Quantum Gravity (QG) using probabilistic methods.
The physical theory of Quantum Gravity has the aim of providing a unified framework which encompasses the two descriptions of nature provided by quantum mechanics and general relativity.
The two dimensional version of the theory is more tractable than the one corresponding to the four dimensional space-time and thus is used as a testing workbench to understand higher dimensional physics.
In order to reinforce the rigourous mathematical understanding of this theory, we wish to explore two particular aspects of QFT which are based on a probabilistic construction called Gaussian Multiplicative chaos. The objectives of QuantGMC are:
A- To obtain an explicit construction of canonical random surfaces equipped with a structure of Kähler manifold. In technical terms this corresponds to the construction of a path integral corresponding to the coupling of Liouville functional and the Mabuchi K-energy on 2D manifold of arbitrary genus.
B- To enhance the current understanding of the Quantum Sine-Gordon model, which can be interpreted as a random version of the Sine-Gordon equation. This model is conjectured to undergo an infinite sequence of collapse transitions when the inverse temperature increases. However up to now, rigorous renormalization theory of the model can only allow to witness the three first of these transitions. We plan to use Gaussian Multiplicative Chaos to provide a more efficient renormalization scheme which would allow to account for all the transitions.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences physiques mécanique relativiste
- sciences naturelles sciences physiques physique quantique théorie quantique des champs
- sciences naturelles sciences physiques physique théorique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
MSCA-IF-EF-ST - Standard EF
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018
Voir tous les projets financés au titre de cet appelCoordinateur
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
13284 Marseille
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.