Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Quantum Field Theory with Gaussian Multiplicative Chaos

Descrizione del progetto

I metodi probabilistici contribuiscono a unire la meccanica quantistica alla relatività generale

Il modello standard della fisica delle particelle presenta diverse lacune riconosciute, una delle quali è rappresentata dal non tenere in considerazione la forza di gravità. La gravità quantistica tenta di conciliare la meccanica quantistica e la relatività generale tramite una descrizione quantistica della gravità come pacchetti di magnetismo. La teoria quantistica dei campi è la struttura matematica per la fisica delle particelle moderna. Mentre la meccanica quantistica si occupa del comportamento di una o poche particelle microscopiche, la teoria quantistica dei campi può essere utilizzata per descrivere sistemi quantistici con molte particelle: i cosiddetti problemi a molti corpi. Attraverso un’analisi approfondita degli approcci probabilistici nella teoria quantistica dei campi, il progetto QuantGMC, finanziato dall’UE, sta sviluppando metodi probabilistici che ci aiuteranno a comprendere meglio la teoria della gravità quantistica.

Obiettivo

The proposed goal for our research program is to attack some mathematical problems arising in constructive two dimensional Quantum Field Theory (QFT) and two dimensional Quantum Gravity (QG) using probabilistic methods.

The physical theory of Quantum Gravity has the aim of providing a unified framework which encompasses the two descriptions of nature provided by quantum mechanics and general relativity.
The two dimensional version of the theory is more tractable than the one corresponding to the four dimensional space-time and thus is used as a testing workbench to understand higher dimensional physics.

In order to reinforce the rigourous mathematical understanding of this theory, we wish to explore two particular aspects of QFT which are based on a probabilistic construction called Gaussian Multiplicative chaos. The objectives of QuantGMC are:

A- To obtain an explicit construction of canonical random surfaces equipped with a structure of Kähler manifold. In technical terms this corresponds to the construction of a path integral corresponding to the coupling of Liouville functional and the Mabuchi K-energy on 2D manifold of arbitrary genus.

B- To enhance the current understanding of the Quantum Sine-Gordon model, which can be interpreted as a random version of the Sine-Gordon equation. This model is conjectured to undergo an infinite sequence of collapse transitions when the inverse temperature increases. However up to now, rigorous renormalization theory of the model can only allow to witness the three first of these transitions. We plan to use Gaussian Multiplicative Chaos to provide a more efficient renormalization scheme which would allow to account for all the transitions.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF-EF-ST - Standard EF

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2018

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITE D'AIX MARSEILLE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 114 746,24
Indirizzo
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
Francia

Mostra sulla mappa

Regione
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 114 746,24
Il mio fascicolo 0 0