Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Illuminating Earth’s microbial diversity and origins from metagenomes with deep learning

Description du projet

Élargir nos connaissances sur la diversité microbienne de la Terre

Les microbes sont de minuscules organismes vivants qui ne peuvent être observés à l’œil nu. Ils sont présents tout autour de nous et jouent un rôle crucial dans le maintien de l’équilibre des nutriments et des déchets dans la biosphère. Ils jouent en outre un rôle important dans la préservation de l’environnement naturel en régulant les cycles biogéochimiques. Le projet ERMADA, financé par l’UE, a pour objectif d’analyser et d’expliciter la diversité microbienne de la Terre en faisant appel à la bioinformatique et à des algorithmes d’apprentissage automatique. Plus précisément, il fera la lumière sur la composition et la structure du microbiome à différents niveaux de rang et lignées et fournira un registre complet de l’empreinte actuelle de la diversité microbienne de la planète.

Objectif

The estimated number of microbes on our planet outnumbers the stars of the Milky Way galaxy and their biomass exceeds that of all plants and animals. Out of the 10^12 microbial species, only around 10^4 have been cultured, less than 10^5 species are represented by classified sequences, and a staggering estimated 99% of these microorganisms remain taxonomically unknown. Metagenomic shotgun sequencing has emerged as the most prevalent way of studying and classifying microorganisms from various habitats whereas genome analysis can be used to uncover the functions of genes, enzymes and metabolic pathways in a microbial community. This painstaking effort is crucial to understanding Earth's biodiversity, as microbes play important roles in regulating the planet’s biogeochemical cycles through processes that govern nutrient circulation in both terrestrial and marine environments. In this proposal, we will employ cutting edge bioinformatics and machine learning algorithms to analyze and elucidate Earth’s microbial diversity. We will use deep neural networks trained by large volumes of metagenomic sequences as well as big data methods to process hundreds of terabytes of data and taxonomically classify all uncharacterized metagenomic samples, by identifying their origins and habitats. Going beyond the capacities of conventional sequence similarity and comparison analyses, neural network models can capture higher level, abstract defining features and patterns in metagenomic sequences. The aim of this study is twofold: i) to gain a deeper understanding of the composition and structure of the microbiome at different rank levels and lineages and ii) to provide a complete record of the planet’s present microbial diversity footprint. The latter can serve as a reference dataset for future studies pertaining to microbiome evolution due to climate change or other long-term environmental factors.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018

Voir tous les projets financés au titre de cet appel

Coordinateur

EREVNITIKO KENTRO VIOIATRIKON EPISTIMON ALEXANDROS FLEMINGK
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 247 628,16
Adresse
FLEMING STREET 34
16 672 VARI-ATHENS
Grèce

Voir sur la carte

Région
Αττική Aττική Ανατολική Αττική
Type d’activité
Research Organisations
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 247 628,16
Mon livret 0 0