Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Illuminating Earth’s microbial diversity and origins from metagenomes with deep learning

Opis projektu

Lepsze poznanie różnorodności mikrobiologicznej na Ziemi

Mikroby to bardzo małe organizmy żywe, niewidoczne gołym okiem. Występują one wszędzie wokół nas i odgrywają kluczową rolę w utrzymaniu równowagi miedzy składnikami odżywczymi i produktami odpadowymi w biosferze. Ponadto, są ważne dla ochrony środowiska naturalnego, ponieważ przyczyniają się do regulacji cykli biogeochemicznych. Finansowany przez UE projekt ERMADA ma na celu analizę i wyjaśnienie różnorodności mikroorganizmów przy użyciu bioinformatyki i algorytmów uczenia maszynowego. Rzuci on światło na skład i strukturę mikrobiomu na różnych poziomach taksonomicznych i w różnych liniach oraz pozwoli uzyskać kompletny obraz obecnego śladu różnorodności mikrobiologicznej na naszej planecie.

Cel

The estimated number of microbes on our planet outnumbers the stars of the Milky Way galaxy and their biomass exceeds that of all plants and animals. Out of the 10^12 microbial species, only around 10^4 have been cultured, less than 10^5 species are represented by classified sequences, and a staggering estimated 99% of these microorganisms remain taxonomically unknown. Metagenomic shotgun sequencing has emerged as the most prevalent way of studying and classifying microorganisms from various habitats whereas genome analysis can be used to uncover the functions of genes, enzymes and metabolic pathways in a microbial community. This painstaking effort is crucial to understanding Earth's biodiversity, as microbes play important roles in regulating the planet’s biogeochemical cycles through processes that govern nutrient circulation in both terrestrial and marine environments. In this proposal, we will employ cutting edge bioinformatics and machine learning algorithms to analyze and elucidate Earth’s microbial diversity. We will use deep neural networks trained by large volumes of metagenomic sequences as well as big data methods to process hundreds of terabytes of data and taxonomically classify all uncharacterized metagenomic samples, by identifying their origins and habitats. Going beyond the capacities of conventional sequence similarity and comparison analyses, neural network models can capture higher level, abstract defining features and patterns in metagenomic sequences. The aim of this study is twofold: i) to gain a deeper understanding of the composition and structure of the microbiome at different rank levels and lineages and ii) to provide a complete record of the planet’s present microbial diversity footprint. The latter can serve as a reference dataset for future studies pertaining to microbiome evolution due to climate change or other long-term environmental factors.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2018

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

EREVNITIKO KENTRO VIOIATRIKON EPISTIMON ALEXANDROS FLEMINGK
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 247 628,16
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 247 628,16
Moja broszura 0 0