European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Modular DNA Origami Platform for the Design of Tunable Glucose Biosensor

Descripción del proyecto

Nanotecnología de ADN para mejorar la gestión de la diabetes

Para el rápido progreso de las tecnologías de detección se requieren biosensores capaces de realizar un seguimiento continuo en un proceso de un solo paso. El rendimiento de los biosensores disponibles se ve obstaculizado por el poder de unión de la unidad de reconocimiento molecular, el cual limita el margen dinámico del sensor y suele estar relacionado con la salida de señal. El proyecto financiado con fondos europeos GlucOrigami tiene por objeto desvincular las unidades de reconocimiento molecular y de transducción de la señal del biosensor mediante unas nanoestructuras de origami de ADN programables y autoensambladas. La solución se probará mediante el modelo de un biosensor de glucosa para el seguimiento de la enfermedad en pacientes de diabetes, en el que se utilizará el origami de DNA para colocar con precisión todos los elementos del biosensor: un par multifluoróforo como unidad de transducción y amplificación, y proteínas de unión a glucosa/galactosa como unidad de reconocimiento molecular.

Objetivo

Biosensors play a crucial role in our everyday lives from health monitoring to disease detection. The rapid advancement of sensing technologies dictates an ever growing need for improved biosensors which are capable to continuously monitor analytes in a single-step process and yield low-cost devices. The performance of many biosensors is, however, limited by the binding strength of their molecular recognition unit which dictates the dynamic range of the sensor and is often tightly connected to the signal transduction unit, i.e. its signal output. In this project, I propose to globally solve this limitation by decoupling the molecular recognition and signal transduction units of the biosensor by exploiting self-assembled and programmable DNA origami nanostructures. This fundamental approach will be demonstrated by the design of a sensitive and tunable biosensor for glucose, whose sensing is of utmost importance for the disease monitoring of diabetic patients. DNA origami will be utilized to precisely position all biosensor elements: multifluorophore FRET pair, which will serve as a signal transduction and amplification unit as well as glucose/galactose binding proteins and glucose functionalities, which will provide a molecular recognition unit. Different biomimicry strategies to tune the useful dynamic range of the biosensors will be evaluated aiming to achieve sensitivity at a physiologically relevant glucose concentration. Finally, the potential to combine these advanced glucose biosensors with low-cost read-out instruments (such as smartphone cameras) will be assessed. The DNA origami glucose sensor proposed here is of great promise for the development of wearable and low-cost glucose sensing devices for diabetes monitoring, which will grow into a large demand in our society. Moreover, it will allow me to merge DNA nanotechnology, molecular biology, spectroscopy and chemistry research, laying the foundations upon which to build my future career in Europe.

Coordinador

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Aportación neta de la UEn
€ 162 806,40
Dirección
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 162 806,40