CORDIS - Forschungsergebnisse der EU
CORDIS

Modular DNA Origami Platform for the Design of Tunable Glucose Biosensor

Projektbeschreibung

DNA-Nanotechnologie für ein besseres Diabetes-Management

Die rasante Weiterentwicklung von Sensortechnologien erfordert Biosensoren, die eine kontinuierliche Überwachung in einem einstufigen Prozess ermöglichen. Die Leistung verfügbarer Biosensoren wird durch die Bindungsstärke der molekularen Erkennungseinheit beeinträchtigt, die den dynamischen Bereich des Sensors begrenzt und oft mit dem Signalausgang verbunden ist. Das EU-finanzierte Projekt GlucOrigami schlägt vor, die molekularen Erkennungs- und Signaltransduktionseinheiten des Biosensors durch Einsatz selbstorganisierender und programmierbarer DNA-Origami-Nanostrukturen zu entkoppeln. Die Lösung wird anhand des Modells eines Glukose-Biosensors für die Krankheitsüberwachung bei Diabetikern demonstriert, wobei das DNA-Origami zur genauen Positionierung aller Biosensorelemente verwendet wird: ein Multifluorophor-Paar als Signaltransduktions- und Verstärkungseinheit sowie Glukose-/Galaktose-bindende Proteine als molekulare Erkennungseinheit.

Ziel

Biosensors play a crucial role in our everyday lives from health monitoring to disease detection. The rapid advancement of sensing technologies dictates an ever growing need for improved biosensors which are capable to continuously monitor analytes in a single-step process and yield low-cost devices. The performance of many biosensors is, however, limited by the binding strength of their molecular recognition unit which dictates the dynamic range of the sensor and is often tightly connected to the signal transduction unit, i.e. its signal output. In this project, I propose to globally solve this limitation by decoupling the molecular recognition and signal transduction units of the biosensor by exploiting self-assembled and programmable DNA origami nanostructures. This fundamental approach will be demonstrated by the design of a sensitive and tunable biosensor for glucose, whose sensing is of utmost importance for the disease monitoring of diabetic patients. DNA origami will be utilized to precisely position all biosensor elements: multifluorophore FRET pair, which will serve as a signal transduction and amplification unit as well as glucose/galactose binding proteins and glucose functionalities, which will provide a molecular recognition unit. Different biomimicry strategies to tune the useful dynamic range of the biosensors will be evaluated aiming to achieve sensitivity at a physiologically relevant glucose concentration. Finally, the potential to combine these advanced glucose biosensors with low-cost read-out instruments (such as smartphone cameras) will be assessed. The DNA origami glucose sensor proposed here is of great promise for the development of wearable and low-cost glucose sensing devices for diabetes monitoring, which will grow into a large demand in our society. Moreover, it will allow me to merge DNA nanotechnology, molecular biology, spectroscopy and chemistry research, laying the foundations upon which to build my future career in Europe.

Koordinator

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Netto-EU-Beitrag
€ 162 806,40
Adresse
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 162 806,40