Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Illuminating neural microcircuitry underlying flicker resonance in the visual cortex

Descrizione del progetto

Uno sguardo più attento alle risposte del cervello alla luce tremolante

Il fisiologo dell’Ottocento Jan Purkinje (1787-1869) studiò le illusioni ottiche indotte dalla luce tremolante. Gli scienziati rimangono affascinati dagli effetti dello sfarfallio sui ritmi cerebrali. In questo contesto, il progetto ResonanceCircuits, finanziato dall’UE, utilizzerà registrazioni che abbracciano scale spaziali (dai neuroni e dai potenziali di campo locali attraverso gli strati corticali all’EEG) per caratterizzare i meccanismi neurali con cui gli stimoli di sfarfallio coinvolgono le proprietà di risonanza dei ritmi cerebrali. Per identificare e manipolare tipi di cellule geneticamente mirate si utilizzeranno strumenti optogenetici. Nel complesso, i risultati del progetto forniranno i mezzi per sfruttare il potenziale non sfruttato dello sfarfallio come strumento per studiare e modulare i ritmi cerebrali.

Obiettivo

Almost 200 years ago, Jan Purkinje examined the visual illusions induced by flickering light. Since then, scientists, clinicians, and artists have been fascinated by the effects of flicker on brain rhythms. When entrained with rhythmic light of ~10, ~20, ~40 Hz, visual cortex responds more strongly, or resonates. In the visual and cognitive neurosciences, resonance flicker is used to study perception and attention; in clinical domain, aberrant resonance responses to flicker are used as a diagnostic tool and potential treatment. However, the neural mechanisms by which flicker engages resonant properties of local cortical circuits and entrains brain rhythms at the level they are generated remain unknown. Over the past decade, this level became accessible to neuroscientists due to the rapid development of new neurobiological tools such as cell-type-specific optical stimulation (optogenetics). In this project, using recordings that span multiple spatial scales (from neurons and local field potentials across cortical layers to EEG), I will characterize the neural mechanisms by which flicker stimuli engage resonant properties of brain rhythms. I will use optogenetic tools to identify and manipulate genetically targeted cell types, and will combine it with simultaneous EEG and high-density laminar recordings in primary visual cortex of awake mice. I will determine the laminar profile of neural activity underlying flicker resonance observed at the EEG level (Study 1). By recording from distinct GABAergic interneuron classes and optogenetically silencing them, I will test the novel hypothesis that distinct classes of interneurons mediate flicker resonance to low (theta, alpha) and high (beta, gamma) frequencies (Study 2). This research will allow me to uncover the neurophysiological basis of resonance responses to flicker in unprecedented detail, and provide means to exploit the untapped potential of flicker as a tool to study and modulate brain rhythms in a targeted way.

Coordinatore

KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Contribution nette de l'UE
€ 175 572,48
Indirizzo
KLOVENIERSBURGWAL 29 HET TRIPPENHUIS
1011 JV AMSTERDAM
Paesi Bassi

Mostra sulla mappa

Regione
West-Nederland Noord-Holland Groot-Amsterdam
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 175 572,48