Description du projet
L’imagerie métabolique dans le diagnostic du cancer
Le diagnostic du cancer et le suivi du traitement reposent sur des méthodes d’imagerie moléculaire qui ne permettent pas d’obtenir une vision complète de l’hétérogénéité de la maladie. Pour résoudre ce problème, le projet CHyMERA, financé par l’UE, propose de développer une nouvelle technologie capable d’imager les phénotypes cancéreux. L’approche mesure la cinétique du flux de glucose à travers différentes voies métaboliques dans différentes conditions de microenvironnement tumoral et leur association avec la prolifération cellulaire. La méthodologie CHyMERA a un fort potentiel d’applications en milieu clinique et devrait améliorer la spécificité du diagnostic du cancer et le suivi de la réponse au traitement.
Objectif
Cancer heterogeneity is reflected in the multitude of phenotypes found in the clinic, with different proliferation statuses and metastatic potentials. These features cannot be assessed with the molecular imaging methods commonly available for diagnosis and monitoring. The main goal of this proposal is to develop a molecular imaging methodology based on endogenous contrast – CHyMERA – and demonstrate its feasibility to image hotspot areas of active proliferation and metastatic potential. The approach is based on the concept of cancer metabolic plasticity, does not require contrast agents or radioactive tracers, and should ultimately provide more specificity to cancer diagnosis and treatment planning than other imaging methods currently available. We propose to use animal models of human cancer, a glucose-enhanced imaging method, and an objective analysis of regional metabolic responses to controlled, reversible changes in the tumour microenvironment (perturbations), such as transient hypoxia. Specifically, we will (i) develop and validate CHyMERA at ultra-high magnetic fields, to monitor the metabolic kinetics of glucose and lactate in the tumour microenvironment. This methodology will be (ii) applied in vivo to two immunocompetent mouse model of GBM (allograft and genetically engineered models), to image vascular permeability/perfusion and hotspots of glioma proliferation. Finally, we will (iii) carry out a pilot study with two isogenic mouse models breast of cancer, metastatic and non-metastatic, to generate hotspots maps of proliferation and metastatic potential. All in vivo results will be validated post-mortem by immunohistochemistry. If successful, this methodology has a strong potential for clinical translational, which the host institution is ideally suited to test.
Champ scientifique
Programme(s)
Régime de financement
MSCA-IF-EF-ST - Standard EFCoordinateur
1400-038 Lisboa
Portugal