Descrizione del progetto
La resilienza algale allo stress può essere la loro chiave per la sopravvivenza
Per le piante terrestri, proprio come per gli animali terrestri, è possibile rintracciare gli antenati negli oceani. Tutte le piante terrestri discendono, comunque, da un unico antenato, un’alga del gruppo Streptophyta. Il mistero irrisolto è che cosa abbia favorito queste particolari alghe nella loro ricerca di conquista della terra, che alla fine ha avuto successo. Recentemente, alcuni scienziati hanno identificato il lignaggio moderno delle alghe Streptophyta più strettamente legato all’antenato algale delle piante terrestri. TerreStriAL, basandosi sui dati precedenti dei ricercatori che mostrano che queste alghe possiedono i geni per un ormone di risposta allo stress delle piante terrestri, si dirige verso il ritrovamento del Santo Graal in questo ambito. I sistemi di modelli di alghe permetteranno agli scienziati di studiare i percorsi dello stress nelle alghe e l’inserimento di questi processi nei modelli in silico aiuterà i ricercatori ad accelerare il processo evolutivo e verificare se le alghe finiscono per diventare piante terrestri.
Obiettivo
Land plants abound on Earth’s surface. All of this diversity arose in a singular event. The algal progenitor of land plants was a streptophyte alga and only recent phylogenomic analyses have specified the particular algal lineage that is most closely related to land plants. But why did land plants evolve only once? And what properties did the ancestors of these terrestrial organisms possess that allowed them to conquer land? Life on land involves rapid and drastic shifts in temperature, light or water availability. Hence, a prime candidate property is the ability to deal with these terrestrial stressors by dynamically responding to shifting environmental cues. My recent data highlight that the streptophyte algae closest to land plants have the genetic makeup for land plant-like stress response signalling circuits—including genes for sensing the major stress phytohormone abscisic acid (ABA). This provides us with testable candidates. To shed light on the early evolution of one of land plants’ key properties, I, here, propose to combine in-depth molecular biological analyses of these candidate stress signalling and response pathways with large-scale systems biology approaches. For this, my team and I will develop streptophyte algal model systems. We will dissect the regulatory hierarchy employed during stress signalling and the response pathways it is regulating in real-time in vivo and across evolutionary time in silico. These approaches will go beyond a view of gene evolution that is based on presence/absence to address if land plant stress dynamics have evolved from algal stress regulatory networks that became hardwired into land plant biology. The aim of this work is to infer the biology of the earliest land plants by investigating their closest algal relatives and interrogating a candidate mechanism used to deal with the challenges of life on land. Understanding this mechanism means understanding a key player that paved the way for the success of plants on land.
Campo scientifico
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-STG - Starting GrantIstituzione ospitante
37073 Gottingen
Germania