Projektbeschreibung
Neue Algorithmen für maschinelles Lernen von physikalischem Verhalten in Raum und Zeit
Numerische Simulationen werden häufig benötigt, um das Verhalten von Systemen zu untersuchen, deren mathematische Modelle zu komplex sind, um analytische Lösungen zur Verfügung zu stellen. Bei der Untersuchung dieser Phänomene müssen räumliche Dimensionen berücksichtigt werden, die im Hinblick auf die dafür erforderlichen Ressourcen schwer zu berechnen und speichern sind. Im Rahmen des EU-finanzierten Projekts SpaTe sollen neuartige Algorithmen zur Ableitung raum-zeitlicher Funktionen entwickelt werden. Damit wird auch die Erstellung effizienter Darstellungen ermöglicht, von denen Entwickler sagen, dass sie ihre Komplexität und hohe Dimensionalität bändigen werden. Letztendlich wird SpaTe ein besseres Verständnis der physikalischen Welt um uns herum ermöglichen und umfangreiche praktische Anwendungen bieten, die von Apps für soziale Medien bis hin zu selbst fahrenden Autos reichen.
Ziel
Numerical simulations are of tremendous importance for a wide range of scientific disciplines and commercial enterprises. For the majority of these natural phenomena, we not only need to consider the three spatial dimensions, but additionally we need to resolve how these phenomena develop over time. Thus, most natural simulations inherently need to resolve four dimensional functions, and most effects at human scales require fine discretizations along all four axes. As a consequence, these functions require large amounts of resources to compute and store. This problem becomes even more pronounced with the advent of data-driven techniques and machine learning. The learning algorithms effectively add additional dimensions, and the complexity and dimensionality of the corresponding functions explains the current lack of data-driven algorithms for space-time functions despite their enormous potential. Within this research project I plan to address the fundamental difficulties that arise in this setting: I will develop novel algorithms to infer spatio-temporal functions, and to construct efficient representations to tame their complexity and high dimensionality. This project combines numerical simulations with computer vision, and machine learning, and has the potential to radically change the way we work with physical simulations. Not only will it break new ground for fast and controllable VFX animations, but it will additionally facilitate the development of new ways to capture physical effects, in conjunction with algorithms to make physical predictions based on observations. Ultimately, this direction will allow us to better understand the physical world around us. It will help us to analyze sparse and ambiguous measurements such as videos and 3D scans automatically and reliably, with a vast range of practical applications from social-media apps to autonomous vehicles.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-COG - Consolidator Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2019-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
80333 Muenchen
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.