Descrizione del progetto
Nuovi algoritmi per l’apprendimento automatico del comportamento fisico nello spazio e nel tempo
Spesso viene richiesto alle simulazioni numeriche di studiare il comportamento di sistemi, i cui modelli matematici sono troppo complessi per fornire soluzioni analitiche. Nello studio di questo fenomeno, è necessario considerare dimensioni spaziali difficili da calcolare e archiviare in termini di risorse necessarie. Il progetto SpaTe, finanziato dall’UE, si propone di sviluppare nuovi algoritmi per dedurre funzioni spazio-temporali, consentendo inoltre la creazione di rappresentazioni efficienti che, secondo gli sviluppatori, ne addomesticheranno la complessità e l’elevata dimensionalità. Infine, SpaTe consentirà una migliore comprensione del mondo fisico attorno a noi e offrirà applicazioni sostanziali pratiche che spaziano dalle applicazioni dei social media alle automobili a guida autonoma.
Obiettivo
Numerical simulations are of tremendous importance for a wide range of scientific disciplines and commercial enterprises. For the majority of these natural phenomena, we not only need to consider the three spatial dimensions, but additionally we need to resolve how these phenomena develop over time. Thus, most natural simulations inherently need to resolve four dimensional functions, and most effects at human scales require fine discretizations along all four axes. As a consequence, these functions require large amounts of resources to compute and store. This problem becomes even more pronounced with the advent of data-driven techniques and machine learning. The learning algorithms effectively add additional dimensions, and the complexity and dimensionality of the corresponding functions explains the current lack of data-driven algorithms for space-time functions despite their enormous potential. Within this research project I plan to address the fundamental difficulties that arise in this setting: I will develop novel algorithms to infer spatio-temporal functions, and to construct efficient representations to tame their complexity and high dimensionality. This project combines numerical simulations with computer vision, and machine learning, and has the potential to radically change the way we work with physical simulations. Not only will it break new ground for fast and controllable VFX animations, but it will additionally facilitate the development of new ways to capture physical effects, in conjunction with algorithms to make physical predictions based on observations. Ultimately, this direction will allow us to better understand the physical world around us. It will help us to analyze sparse and ambiguous measurements such as videos and 3D scans automatically and reliably, with a vast range of practical applications from social-media apps to autonomous vehicles.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-COG - Consolidator Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2019-COG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
80333 Muenchen
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.