Project description
Improving immunotherapy efficiency in chronic lymphocytic leukemia
Chimeric antigen receptor (CAR) T-cell cancer immunotherapy is a promising novel strategy that makes use of a patient's own immune cells. However, in contrast to the success of CAR T cells in aggressive leukemia, their effect in the B-cell malignancy chronic lymphocytic leukemia (CLL, the most common leukemia in the Western World) is limited. Preliminary work shows defects in CLL-derived T-cell metabolism as a plausible causative factor. The EU-funded BOOTCAMP project aims to define the molecular mechanisms of (metabolic) alterations in CLL-derived T cells and elucidate how CLL cells reprogram T-cell metabolism. The project will provide crucial insight into the interplay between CLL and T cells, and the underlying failure of cancer immune surveillance. This may lead to metabolism-based curative autologous T cell based therapies in CLL, which may also be relevant for other malignancies.
Objective
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world. Novel targeted drugs are effective, but not curative. Moreover, prolonged use is associated with development of resistance, toxicity, and high economic cost. Allogeneic stem cell transplantation, which evokes a T cell mediated response, is potentially curative yet is associated with high graft-vs-host-related mortality. Therefore, an autologous T cell-based approach, e.g. chimeric antigen receptor T cells (CAR-T), is a highly promising strategy. However, in contrast to the success of CAR-T cells in aggressive leukemia, their effect in CLL is limited owing to a largely unexplained acquired T cell dysfunction in this disease setting.
I recently found that CLL cells impose a reduction in mitochondrial fitness and altered glucose metabolism on T cells, which may underlie the acquired T cell dysfunction. Lending clinical significance to this finding, I observed that the success of CAR-T treatment in CLL patients is highly associated with their mitochondrial biogenic capacity. I therefore hypothesize that improving mitochondrial fitness of CAR-T cells may offer a path to cure CLL.
I aim to:
1. Characterize the molecular mechanisms of metabolic alterations in CLL-derived T cells
2. Elucidate how CLL cells reprogram T cells metabolism
3. Increase mitochondrial biogenesis and fitness in CAR-T cells to improve therapeutic efficacy
To achieve these goals, I will conduct an array of complementary molecular, metabolic, and genetic assays using patient samples and a murine model of CLL. To address therapeutic potential I will study murine and human CAR-T cells in which metabolic processes will be manipulated.
This project provides crucial insight into the interplay between CLL and T cells, and the underlying failure of cancer immune surveillance. This may lead to metabolism-based curative autologous T cell based therapies in CLL, which may also be relevant for other malignancies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences sociology demography mortality
- natural sciences biological sciences cell biology cell metabolism
- medical and health sciences clinical medicine transplantation
- medical and health sciences clinical medicine oncology leukemia
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1081 HV Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.