Descripción del proyecto
Ampliar el ámbito de las funciones especiales en torno a las integrales elípticas
Las matemáticas proporcionan el lenguaje para describir las relaciones que rigen las interacciones en el mundo que nos rodea. Los sistemas de ecuaciones diferenciales parciales son fundamentales para estas descripciones. El último decenio ha sido testigo de una explosión de la investigación relativa a los modelos de Calogero-Moser-Sutherland (CMS) relevantes para dar unas soluciones exactas a importantes problemas de mecánica cuántica de múltiples partículas unidimensionales y sus equivalentes clásicos. Estos modelos son fundamentales para numerosos campos no solo de las matemáticas puras, sino también de la física teórica, incluidas la teoría cuántica de campos y la física de la materia condensada. El proyecto ELLIS-SDI, financiado con fondos europeos, ampliará estos modelos centrándose en las funciones e integrales elípticas y en la correspondencia entre los modelos de CMS y las jerarquías de Painlevé, otra clase importante de ecuaciones diferenciales.
Objetivo
The proposal studies relativistic generalizations of quantum integrable models of Calogero-Moser-Sutherland (CMS) type and their deformations, and the correspondence between the CMS models and the Painlevé hierarchies. It is divided into several parts. The first part investigates the van Diejen model (which is the most complicated model in the CMS family) and its sophisticated limiting case proposed by Takemura. The aim is to construct exact eigenfunctions of these two models using the kernel function methods. These eigenfunctions belong to an emerging new class in the theory of special functions. The second part is devoted to the study of integrable deformations of the relativistic CMS model (Ruijsenaars model), going back to the works of Chalykh, Feigin, Veselov and Sergeev. In the trigonometric case, the deformed models are known to be integrable and the eigenfunctions of the principal Hamiltonian are given in terms of super-Macdonald polynomials. Using the kernel function identities, I will prove that all higher Hamiltonians of this model are diagonalized by the super-Macdonald polynomials. This will be used to establish orthogonality of the super-Macdonald polynomials. Extending this, I plan to establish integrability of the elliptic case. Furthermore, by using algebraic tools such as Cherednik operators and double affine Hecke algebras, and building upon a recent work of Chalykh, I will construct quantum Lax matrices for the deformed models in all cases. Lastly, we aim to find a conceptual link between elliptic Cherednik algebras and higher Painlevé systems. Namely, first we will obtain the classical Inozemtsev system from Cherednik algebra by a Hamiltonian reduction. By relating this to the recent results of Bertolo, Cafasso, and Rubtsov, we will then find an alternative and more natural interpretation of the higher Painlevé equations as isomonodromic deformations.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) H2020-MSCA-IF-2019
Ver todos los proyectos financiados en el marco de esta convocatoriaCoordinador
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
LS2 9JT Leeds
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.