Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Elliptic Integrable Systems: solutions, deformations and integrability

Opis projektu

Rozszerzenie zbioru funkcji specjalnych z naciskiem na całki eliptyczne

Matematyka dostarcza języka do opisu relacji rządzących oddziaływaniami w otaczającym nas świecie. Podstawowe znaczenie dla tych opisów mają układy równań różniczkowych cząstkowych. W ostatniej dekadzie nastąpił prawdziwy wybuch badań dotyczących modeli Calogero-Moser-Sutherland (CMS) umożliwiających uzyskiwanie dokładnych rozwiązań ważnych jednowymiarowych problemów wielocząstkowych z zakresu mechaniki kwantowej i ich klasycznych odpowiedników. Modele te mają fundamentalne znaczenie dla wielu dziedzin nie tylko czystej matematyki, lecz także fizyki teoretycznej, w tym kwantowej teorii pola i fizyki materii skondensowanej. Finansowany ze środków UE projekt ELLIS-SDI rozszerzy te modele, koncentrując się na funkcjach eliptycznych i całkach oraz związkach między modelami CMS a hierarchiami Painlevé, kolejną ważną klasą równań różniczkowych.

Cel

The proposal studies relativistic generalizations of quantum integrable models of Calogero-Moser-Sutherland (CMS) type and their deformations, and the correspondence between the CMS models and the Painlevé hierarchies. It is divided into several parts. The first part investigates the van Diejen model (which is the most complicated model in the CMS family) and its sophisticated limiting case proposed by Takemura. The aim is to construct exact eigenfunctions of these two models using the kernel function methods. These eigenfunctions belong to an emerging new class in the theory of special functions. The second part is devoted to the study of integrable deformations of the relativistic CMS model (Ruijsenaars model), going back to the works of Chalykh, Feigin, Veselov and Sergeev. In the trigonometric case, the deformed models are known to be integrable and the eigenfunctions of the principal Hamiltonian are given in terms of super-Macdonald polynomials. Using the kernel function identities, I will prove that all higher Hamiltonians of this model are diagonalized by the super-Macdonald polynomials. This will be used to establish orthogonality of the super-Macdonald polynomials. Extending this, I plan to establish integrability of the elliptic case. Furthermore, by using algebraic tools such as Cherednik operators and double affine Hecke algebras, and building upon a recent work of Chalykh, I will construct quantum Lax matrices for the deformed models in all cases. Lastly, we aim to find a conceptual link between elliptic Cherednik algebras and higher Painlevé systems. Namely, first we will obtain the classical Inozemtsev system from Cherednik algebra by a Hamiltonian reduction. By relating this to the recent results of Bertolo, Cafasso, and Rubtsov, we will then find an alternative and more natural interpretation of the higher Painlevé equations as isomonodromic deformations.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2019

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITY OF LEEDS
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 212 933,76
Adres
WOODHOUSE LANE
LS2 9JT Leeds
Zjednoczone Królestwo

Zobacz na mapie

Region
Yorkshire and the Humber West Yorkshire Leeds
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 212 933,76
Moja broszura 0 0