CORDIS - Forschungsergebnisse der EU
CORDIS

New Phases of Matter for Quantum Computation

Projektbeschreibung

Exotische Materiezustände mit dem Potenzial zur Entfesselung der Quanteninformatik

Herkömmliche Computer codieren Informationen in Form einer Abfolge elektronischer „Bits“. Jedes Bit kann zwei Werte annehmen: null oder eins. Genau wie die Buchstaben einer Sprache Wörter und Sätze bilden, codieren auch Bitabfolgen Informationen. Quantencomputer verwenden Quantenbits, sogenannte Qubits, die ebenfalls mithilfe von Nullen und Einsen dargestellt werden, diesmal jedoch die Quantenzustände der Materie wiedergeben. Im Gegensatz zu digitalen Bits können Qubits jedoch gleichzeitig beide Werte annehmen. Die Datenmengen, die auf diese Weise gespeichert werden können, nehmen exponentiell mit der Anzahl der Bits zu, allerdings gilt dies auch für die Fehlerwahrscheinlichkeit. Das EU-finanzierte Projekt NPhOMaQuCo untersucht neue Materiephasen, die in neuartigem, robustem Quantencode zur Fehlerbehebung verwendet werden sollen und bei denen Qubits eingebettet werden, um bestehende Hindernisse zu bewältigen und Lösungen für derzeit unüberwindbare Probleme zu finden.

Ziel

There is now a huge international effort to realise a quantum computer that can be scaled to solve problems that are intractable with modern technology. Realising a quantum computer is challenging because its individual components, known as qubits, will invariably experience errors that will cause the system to fail before a computation is completed. To deal with the issue we encode qubits in quantum error-correcting codes. These are robust many-body systems that will preserve their encoded logical information, even if their individual components suffer errors. They are designed such that we can run diagnostics to identify and repair errors provided the rate at which the system experiences errors is suitably low. We can protect the encoded information arbitrarily well by increasing the size of the quantum error-correcting code if our noisy qubits experience errors below some threshold rate. It is presently very challenging to construct and control our best available designs of quantum error-correcting codes using modern laboratory technology. To alleviate this problem we must search more robust codes that are more resource efficient than our current proposals. This will make the machines we seek to build more experimentally amenable. Our leading code designs for fault-tolerant quantum computation are based on phases of condensed quantum matter. Specifically, we synthesise physical systems with the fundamental properties of exotic phases to find robust designs for scalable quantum computation. There have been a number of recent developments, including the discovery of new phases of matter, that may help us overcome the issues that keep us from realising a quantum computer. I will examine new developments in condensed-matter physics to design robust new quantum error-correcting codes that can be realised experimentally to show that we can scale a quantum computer to solve problems that are presently intractable.

Koordinator

KOBENHAVNS UNIVERSITET
Netto-EU-Beitrag
€ 207 312,00
Adresse
NORREGADE 10
1165 Kobenhavn
Dänemark

Auf der Karte ansehen

Region
Danmark Hovedstaden Byen København
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 207 312,00