Projektbeschreibung
Higgs-Bündel-Geometrie im neuen Lichte betrachtet
Higgs-Bündel sind in verschiedenen Gebieten der Mathematik und Physik Gegenstand der Forschung. Zentrales Merkmal von Higgs-Bündeln ist, dass sie in Sammlungen vorliegen, die durch die Punkte einer quasi-projektiven Varietät parametrisiert sind. Dabei handelt es sich um die Modulräume von Higgs-Bündeln, von denen festgestellt wurde, dass sie eine Hauptrolle im geometrischen Langlands-Programm spielen. Die Forschung konzentriert sich gegenwärtig darauf, die vollständige Langlands-Korrespondenz aus der abelisierten Version des Higgs-Bündels zu erzeugen. Das EU-finanzierte Projekt GoH wird die Forschung vertiefen, indem zentrale Elemente der Geometrie der Higgs-Bündel aus einem neuen Blickwinkel heraus untersucht werden. Insbesondere wird die Bialynicki-Birula-Stratifikation anhand moderner algebraischer Verfahren erkundet und es werden unter Einsatz der Theorie der SU(p, q)-Higgs-Bündel die irreduziblen Komponenten des nilpotenten Kegels sorgfältig untersucht.
Ziel
Higgs bundles play a fundamental role in the current panorama of mathematics and theoretical physics through their many connections. Amongst the latter is the link with the geometric Langlands programme, a suitable generalization of the relation between a curve and its Picard variety, which moreover admits a natural quantum field theoretical interpretation. According to this, any G- local system on a curve yields a perverse sheaf on the moduli stack of G*-bundles (where G* is the Langlands dual to G). A simpler (abelianised) version of the geometric Langlands programme has been proven for Higgs bundles by Donagi and Pantev. A programme initiated by these two scientists aims at inducing the full Langlands correspondence from its abelianised version. Building on the work of the researcher and the hosts, we will fill in the gaps of this program and provide alternative tools broadening the current state of the art also beyond this action. In doing so, we will study central elements of the geometry of Higgs bundles from a new perspective. More precisely, we will give a way to understand the Bialynicki-Birula stratification via algebraic techniques, and, related to that, carefully study the irreducible components of the nilpotent cone, applying also the theory of SU(p,q)-Higgs bundles. Finally, we will explore the case of positive characteristic, with the aim to shed light on the Hecke eigenproperty in this setting.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Naturwissenschaften theoretische Physik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2019
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
06100 Nice
Frankreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.