Project description
Deep learning algorithms to improve machine translation
Machine translation is automated translation performed by a computer with no human involvement. Despite technological advances and the highly multilingual nature of our world, speech and language technology has not kept up with demands in all languages. The EU-funded LUNAR project will develop a multilingual and multimodal model that builds upon a lifelong universal language representation. This model will compensate for the lack of supervised data and significantly increase the system capacity of generalisation. It will reduce the number of required translation systems from quadratic to linear as well as allow for an incremental adaptation of new languages and data.
Objective
Why is machine translation between English and Portuguese significantly better than machine translation between Dutch and Spanish? Why do speech recognizers work better in German than Finnish? The main problem is the insufficient amount of labelled data for training in both cases. Although the world is multimodal and highly multilingual, speech and language technology is not keeping up with the demand in all languages. We need better learning methods that exploit the advancements of a few modalities and languages for the benefit of others. This proposal addresses the low-resources problem and the expensive approach to multilingual machine translation since systems for all translation pairs are required.
LUNAR proposes to jointly learn a multilingual and multimodal model that builds upon a lifelong universal language representation. This model will compensate for the lack of supervised data and significantly increase the system capacity of generalization from training data given the unconventional variety of employed resources. This model will reduce the number of required translation systems from quadratic to linear as well as allowing for an incremental adaptation of new languages and data.
The high-risk/high-gain relies on automatically training a universal language representation by specifically designed deep learning algorithms. LUNAR will employ an encoder-decoder architecture. The encoder represents an abstraction of the input by reducing its dimensionality,which will become the proposed universal language representation; from this abstraction, the decoder generates the output. The encoder-decoder internal architecture will be designed for learning the universal language representation,which will be appropriately integrated as an objective of the architecture.
LUNAR will impact multidisciplinary communities of specialists in computer science, mathematics, engineering and linguistics who work on natural language understanding and speech processing applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- humanities languages and literature linguistics
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences mathematics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08034 BARCELONA
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.