Description du projet
Algorithmes d’apprentissage en profondeur pour améliorer la traduction automatique
La traduction automatique est une traduction automatisée effectuée par un ordinateur sans intervention humaine. Malgré les progrès technologiques et la nature hautement multilingue de notre monde, la technologie de la parole et du langage n’a pas répondu aux demandes dans toutes les langues. Le projet LUNAR, financé par l’UE, développera un modèle multilingue et multimodal qui s’appuie sur une représentation linguistique universelle tout au long de la vie. Ce modèle compensera le manque de données supervisées et augmentera significativement la capacité de généralisation du système. Cela réduira le nombre de systèmes de traduction requis, passant d’une complexité quadratique à une complexité linéaire, et permettra une adaptation incrémentielle de nouvelles langues et données.
Objectif
Why is machine translation between English and Portuguese significantly better than machine translation between Dutch and Spanish? Why do speech recognizers work better in German than Finnish? The main problem is the insufficient amount of labelled data for training in both cases. Although the world is multimodal and highly multilingual, speech and language technology is not keeping up with the demand in all languages. We need better learning methods that exploit the advancements of a few modalities and languages for the benefit of others. This proposal addresses the low-resources problem and the expensive approach to multilingual machine translation since systems for all translation pairs are required.
LUNAR proposes to jointly learn a multilingual and multimodal model that builds upon a lifelong universal language representation. This model will compensate for the lack of supervised data and significantly increase the system capacity of generalization from training data given the unconventional variety of employed resources. This model will reduce the number of required translation systems from quadratic to linear as well as allowing for an incremental adaptation of new languages and data.
The high-risk/high-gain relies on automatically training a universal language representation by specifically designed deep learning algorithms. LUNAR will employ an encoder-decoder architecture. The encoder represents an abstraction of the input by reducing its dimensionality,which will become the proposed universal language representation; from this abstraction, the decoder generates the output. The encoder-decoder internal architecture will be designed for learning the universal language representation,which will be appropriately integrated as an objective of the architecture.
LUNAR will impact multidisciplinary communities of specialists in computer science, mathematics, engineering and linguistics who work on natural language understanding and speech processing applications.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- lettres langues et littérature linguistique
- sciences naturelles informatique et science de l'information intelligence artificielle apprentissage automatique apprentissage profond
- sciences naturelles mathématiques
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-STG - Starting Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2020-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
08034 BARCELONA
Espagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.