Descripción del proyecto
Algoritmos de aprendizaje profundo para mejorar la traducción automática
La traducción automática es la traducción automatizada que realiza un ordenador sin intervención humana. A pesar de los avances tecnológicos y el carácter sumamente multilingüe de nuestro mundo, la tecnología del habla y el lenguaje no se ha mantenido acorde con la demanda en todas las lenguas. El proyecto LUNAR, financiado con fondos europeos, desarrollará un modelo multilingüe y multimodal basado en una representación universal del lenguaje a lo largo de la vida. Este modelo compensará la falta de datos supervisados y aumentará considerablemente la capacidad de generalización del sistema. Reducirá el número de sistemas de traducción necesarios de cuadrático a lineal, además de permitir una adaptación gradual de lenguas y datos nuevos.
Objetivo
Why is machine translation between English and Portuguese significantly better than machine translation between Dutch and Spanish? Why do speech recognizers work better in German than Finnish? The main problem is the insufficient amount of labelled data for training in both cases. Although the world is multimodal and highly multilingual, speech and language technology is not keeping up with the demand in all languages. We need better learning methods that exploit the advancements of a few modalities and languages for the benefit of others. This proposal addresses the low-resources problem and the expensive approach to multilingual machine translation since systems for all translation pairs are required.
LUNAR proposes to jointly learn a multilingual and multimodal model that builds upon a lifelong universal language representation. This model will compensate for the lack of supervised data and significantly increase the system capacity of generalization from training data given the unconventional variety of employed resources. This model will reduce the number of required translation systems from quadratic to linear as well as allowing for an incremental adaptation of new languages and data.
The high-risk/high-gain relies on automatically training a universal language representation by specifically designed deep learning algorithms. LUNAR will employ an encoder-decoder architecture. The encoder represents an abstraction of the input by reducing its dimensionality,which will become the proposed universal language representation; from this abstraction, the decoder generates the output. The encoder-decoder internal architecture will be designed for learning the universal language representation,which will be appropriately integrated as an objective of the architecture.
LUNAR will impact multidisciplinary communities of specialists in computer science, mathematics, engineering and linguistics who work on natural language understanding and speech processing applications.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- humanidades lenguas y literatura lingüística
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático aprendizaje profundo
- ciencias naturales matemáticas
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
08034 BARCELONA
España
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.