Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Lifelong UNiversal lAnguage Representation

Projektbeschreibung

Deep-Learning-Algorithmen sollen maschinelle Übersetzung verbessern

Maschinelle Übersetzungen sind automatisierte Übersetzungen, die ohne menschliches Eingreifen von einem Computer durchgeführt werden. Trotz der technologischen Fortschritte und dem mehrsprachigen Charakter unserer Welt konnten Sprachtechnologien bisher nicht mit den Anforderungen in allen Sprachen mithalten. Das EU-finanzierte Projekt LUNAR wird ein mehrsprachiges und multimodales Modell entwickeln, das auf lebenslanger universeller Sprachdarstellung basiert. Das Modell wird den Mangel an überwachten Daten ausgleichen und die Systemkapazität zur allgemeinen Anwendung merklich verbessern. Es wird die erforderliche Anzahl an Übersetzungssystemen von quadratisch auf linear reduzieren und die inkrementelle Adaption neuer Sprachen und Daten ermöglichen.

Ziel

Why is machine translation between English and Portuguese significantly better than machine translation between Dutch and Spanish? Why do speech recognizers work better in German than Finnish? The main problem is the insufficient amount of labelled data for training in both cases. Although the world is multimodal and highly multilingual, speech and language technology is not keeping up with the demand in all languages. We need better learning methods that exploit the advancements of a few modalities and languages for the benefit of others. This proposal addresses the low-resources problem and the expensive approach to multilingual machine translation since systems for all translation pairs are required.
LUNAR proposes to jointly learn a multilingual and multimodal model that builds upon a lifelong universal language representation. This model will compensate for the lack of supervised data and significantly increase the system capacity of generalization from training data given the unconventional variety of employed resources. This model will reduce the number of required translation systems from quadratic to linear as well as allowing for an incremental adaptation of new languages and data.
The high-risk/high-gain relies on automatically training a universal language representation by specifically designed deep learning algorithms. LUNAR will employ an encoder-decoder architecture. The encoder represents an abstraction of the input by reducing its dimensionality,which will become the proposed universal language representation; from this abstraction, the decoder generates the output. The encoder-decoder internal architecture will be designed for learning the universal language representation,which will be appropriately integrated as an objective of the architecture.
LUNAR will impact multidisciplinary communities of specialists in computer science, mathematics, engineering and linguistics who work on natural language understanding and speech processing applications.

Finanzierungsplan

ERC-STG - Starting Grant

Gastgebende Einrichtung

UNIVERSITAT POLITECNICA DE CATALUNYA
Netto-EU-Beitrag
€ 1 498 723,00
Adresse
CALLE JORDI GIRONA 31
08034 Barcelona
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 498 723,00

Begünstigte (1)