Projektbeschreibung
Neue Untersuchung soll Probleme im Zusammenhang mit aufspannenden Teilgraphen lösen
Die Graphentheorie – das Studium mathematischer Strukturen, die zur Modellierung paarweiser Beziehungen zwischen Objekten verwendet werden, – weist zahlreiche natürliche Verbindungen zu anderen Fachgebieten wie etwa der Kombinatorik und der theoretischen Informatik auf. Ein fundamentales Metaproblem der Graphentheorie ist folgendes: Welche Bedingungen garantieren bei einem gegebenen Graphen H, dass ein anderer Graph G eine Kopie von H als Teilgraph enthält? Das EU-finanzierte Projekt SSiGraph wird sich mit einer Reihe spannender und herausfordernder extremaler und probabilistischer Probleme der aufspannenden Teilgraphen in zufälligen und farbigen Graphen befassen. Die spezifischen Ziele repräsentieren eine sorgfältige Auswahl an zusammenhängenden großen offenen Problemen, deren Lösung als wahrhaft bedeutender Fortschritt auf diesem Gebiet gelten dürfte.
Ziel
Graph Theory is a highly active area of Combinatorics with strong links to fields such as Optimisation and Theoretical Computer Science. A fundamental meta-problem in Graph Theory is the following: given a graph H, what conditions guarantee that another graph G contains a copy of H as a subgraph? This is particularly important when H is spanning, i.e. where G and H have the same number of vertices.
This project will address a range of exciting and challenging extremal and probabilistic problems on spanning subgraphs in graphs, in the following two interrelated areas:
1. Spanning subgraphs in random graphs: A key aim of Probabilistic Combinatorics is to determine the density threshold for the appearance of different subgraphs in random graphs. This is particularly difficult when the subgraph is spanning, where the known results and techniques are typically highly specific. This project will lead to a unified paradigm for studying thresholds of spanning subgraphs by introducing and developing a new coupling technique. This will provide an excellent platform to study the Kahn-Kalai conjecture, a bold general conjecture on appearance thresholds, and problems including hitting-time conjectures and universality problems.
2. Spanning subgraphs in coloured graphs: Many different combinatorial problems are expressible using edge coloured graphs, including Latin square problems dating back to Euler. My objectives here concern long-standing problems on spanning trees, cycles and matchings, and, through this, the resolution of several famous labelling and packing problems.
In preliminary work I have developed techniques to study these problems, techniques which will have a far reaching impact, and certainly lead to further applications, e.g. with hypergraphs and resilience problems. The objectives represent a carefully selected range of related major outstanding problems, whose solution would mark truly significant progress in the field.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Graphentheorie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Kombinatorik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-STG - Starting Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2020-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
CV4 8UW COVENTRY
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.