Descrizione del progetto
Dispositivi bioibridi per studiare le sinapsi neurali
Molti disturbi neurodegenerativi scaturiscono da difetti delle connessioni neurali a livello cerebrale che si traducono in errori di comunicazione nel sistema nervoso centrale. Per studiare l’attività elettrica e la connettività delle reti neuronali, l’iniziativa BRAIN-ACT, finanziata dall’UE, si propone di sviluppare dispositivi bioibridi interattivi in grado di duplicare le reti biologiche neuronali per i neuroni artificiali organici. I dispositivi realizzati integreranno materiali elettroattivi e consentiranno ai neuroni di interagire con il dispositivo per la prima volta. I risultati forniranno informazioni importanti sul comportamento dinamico e sulla plasticità delle sinapsi, aprendo la strada a dispositivi neuromorfici che fungano da materiali impiantabili nel cervello.
Obiettivo
BRAIN-ACT aims to develop the next generation of interactive biohybrid devices which will couple biological neuronal networks to organic artificial neurons. For the first time, neurons will interact with the device by active mechanical reshaping which will transduce in the maintenance of the electrical network connection strength (long term potentiation –LTP). This will be achieved by a) processing dynamic electroactive materials b) engineering the neuromorphic abiotic surface with biological synaptic receptors and c) intergrate an in vitro biohybrid synapses array to investigate the interplay at the interface between neuronal cells and their synaptic activity with dynamic electrically-smart materials.
BRAIN-ACT will pave the way for a new class of chip-based smart bioelectronic devices which will ‘have a shape of a neuron and act like a neuron’.
Over 10 million people are affected by neurodegenerative diseases like Parkinson’s and Alzheimer’s worldwide and show significant loss of functionalities in their daily life. Those are mainly related to faulty connections within the brain which reflects neuronal miscommunication regulated by billions of individual connections among pairs called synapses. The ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity is called synaptic plasticity and is regulated through electrical and biomechanical signals exchanged by neurons pairs. In vitro bioelectronic platforms have been devoted to monitor and stimulate those signals across neuronal network areas to characterize electrical activity and connectivity in a passive manner.
BRAIN-ACT will revolutionize the study of in vitro neuronal networks through active mechanical reshaping to establish optimal electrical signal exchange among neuronal cells. More broadly, the proposed project will define the fundamental conditions to unleash the potential of neuromorphic devices as implantable materials in to the brain.
Campo scientifico
Not validated
Not validated
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-STG - Starting GrantIstituzione ospitante
52428 Julich
Germania