Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Volumetric light-driven bioprinting capturing complex physiological shape, size and function in artificial tissues and organoids

Descripción del proyecto

Una novedosa técnicas de impresión 3D para reproducir partes del cuerpo humano

Los organoides y tejidos producidos en laboratorio prometen revolucionar la medicina y la biología, al solucionar los problemas de escasez de trasplantes e introducir modelos «in vitro» precisos de la fisiología humana como alternativa a la experimentación con animales. La funcionalidad de los órganos vivos está estrechamente vinculada con su compleja estructura. Los avances en las tecnologías clave que captan esta relación entre forma y función «in vitro» pueden contribuir a alcanzar el anhelado objetivo de una ingeniería de tejidos reales. El proyecto financiado con fondos europeos VOLUME-BIO se propone desarrollar una nueva técnica de bioimpresión para crear de forma precisa y mediante ingeniería organoides y tejidos que presenten funciones fisiológicas. Los hidrogeles cargados de células se esculpirán en análogos de tejidos en segundos cuando se expongan a un campo de luz.

Objetivo

Lab-made artificial tissues and organoids promise to revolutionize medicine, tackling transplant shortage, and to innovate biological and pharmaceutical research, introducing accurate in vitro models of human physiology, as potential alternatives to animal experimentation. The functionality of living organs is intimately linked to their complex architecture, from the physicochemical properties of extracellular microenvironment, to tissue-level scale, where multiple cell populations interact in a precisely orchestrated spatial distribution. Advances in key technologies capturing this shape-function relationship in vitro can bring the long-sought goal of real tissue engineering within reach.

In VOLUME-BIO I will develop a novel multi-material volumetric bioprinting technology for the precise generation of engineered tissues and organoids exhibiting physiological functions. Inspired by optical tomography, cell-laden hydrogels are sculpted into tissue analogues within seconds, upon exposure to bio-friendly 3D visible light fields. Tuneable light patterns control the local distribution of cells and, through orthogonal photo-chemical reactions, of key factors that guide stem cell fate, namely stiffness of the extracellular matrix and morphogenetic biochemical cues. The unprecedented ability to tune independently such parameters will also permit to build 3D platforms to study how architectural complexity impacts organoid maturation. This will provide a new tool to address the so far unanswered question of how much an engineered tissue needs to mimic Nature’s template to achieve physiological functionality.

Bringing together my expertise in engineering, bioprinting, materials design and stem cell biology, I will first test the potential and versatility of this novel volumetric technology by building from anatomical patient-specific images functional and centimetre-scale vascularized bone and bone marrow organoid supporting physiological-like hematopoiesis.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Aportación neta de la UEn
€ 1 554 634,14
Dirección
HEIDELBERGLAAN 100
3584 CX Utrecht
Países Bajos

Ver en el mapa

Región
West-Nederland Utrecht Utrecht
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 554 634,14

Beneficiarios (2)