Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Volumetric light-driven bioprinting capturing complex physiological shape, size and function in artificial tissues and organoids

Descrizione del progetto

Una nuova tecnica di stampa 3D per riprodurre parti del corpo umano

I tessuti e gli organoidi coltivati in laboratorio promettono di rivoluzionare la medicina e la biologia, affrontando la carenza di trapianti e introducendo accurati modelli in vitro di fisiologia umana come alternativa alla sperimentazione animale. La funzionalità degli organi viventi è intimamente collegata alla loro complessa architettura. I progressi nelle tecnologie chiave che catturano in vitro questa relazione forma-funzione possono contribuire a realizzare l’obiettivo a lungo cercato della vera ingegneria tissutale. Il progetto VOLUME-BIO, finanziato dall’UE, prevede di sviluppare una nuova tecnica di biostampa per creare con precisione tessuti e organoidi ingegnerizzati che espongono funzioni fisiologiche. Idrogel carichi di cellule verranno scolpiti in analoghi tissutali in pochi secondi, dopo l’esposizione a un campo luminoso.

Obiettivo

Lab-made artificial tissues and organoids promise to revolutionize medicine, tackling transplant shortage, and to innovate biological and pharmaceutical research, introducing accurate in vitro models of human physiology, as potential alternatives to animal experimentation. The functionality of living organs is intimately linked to their complex architecture, from the physicochemical properties of extracellular microenvironment, to tissue-level scale, where multiple cell populations interact in a precisely orchestrated spatial distribution. Advances in key technologies capturing this shape-function relationship in vitro can bring the long-sought goal of real tissue engineering within reach.

In VOLUME-BIO I will develop a novel multi-material volumetric bioprinting technology for the precise generation of engineered tissues and organoids exhibiting physiological functions. Inspired by optical tomography, cell-laden hydrogels are sculpted into tissue analogues within seconds, upon exposure to bio-friendly 3D visible light fields. Tuneable light patterns control the local distribution of cells and, through orthogonal photo-chemical reactions, of key factors that guide stem cell fate, namely stiffness of the extracellular matrix and morphogenetic biochemical cues. The unprecedented ability to tune independently such parameters will also permit to build 3D platforms to study how architectural complexity impacts organoid maturation. This will provide a new tool to address the so far unanswered question of how much an engineered tissue needs to mimic Nature’s template to achieve physiological functionality.

Bringing together my expertise in engineering, bioprinting, materials design and stem cell biology, I will first test the potential and versatility of this novel volumetric technology by building from anatomical patient-specific images functional and centimetre-scale vascularized bone and bone marrow organoid supporting physiological-like hematopoiesis.

Meccanismo di finanziamento

ERC-STG - Starting Grant

Istituzione ospitante

UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Contribution nette de l'UE
€ 1 554 634,14
Indirizzo
HEIDELBERGLAAN 100
3584 CX Utrecht
Paesi Bassi

Mostra sulla mappa

Regione
West-Nederland Utrecht Utrecht
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 554 634,14

Beneficiari (2)