Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Volumetric light-driven bioprinting capturing complex physiological shape, size and function in artificial tissues and organoids

Projektbeschreibung

Eine neuartige 3D-Drucktechnik zur Reproduktion menschlicher Körperteile

Die Züchtung von Geweben und Organoiden im Labor könnte die Medizin und Biologie revolutionieren, dem Mangel an Transplantaten entgegenwirken und den Weg zu genauen In-vitro-Modellen der menschlichen Physiologie als Alternative zu Tierversuchen ebnen. Die Funktionalität lebender Organe ist eng mit ihrer komplexen Architektur verbunden. Fortschritte in Schlüsseltechnologien, welche diese Form-Funktions-Beziehung in vitro erschließen, können dazu beitragen, das lang ersehnte Ziel der echten Gewebezüchtung zu verwirklichen. Das EU-finanzierte Projekt VOLUME-BIO plant die Entwicklung eines neuen Biodruckverfahrens zur präzisen Herstellung von Gewebe und Organoiden, die physiologische Funktionen aufweisen. Zellbeladene Hydrogele werden durch Bestrahlung mit einem Lichtfeld innerhalb von Sekunden zu Gewebeanaloga geformt.

Ziel

Lab-made artificial tissues and organoids promise to revolutionize medicine, tackling transplant shortage, and to innovate biological and pharmaceutical research, introducing accurate in vitro models of human physiology, as potential alternatives to animal experimentation. The functionality of living organs is intimately linked to their complex architecture, from the physicochemical properties of extracellular microenvironment, to tissue-level scale, where multiple cell populations interact in a precisely orchestrated spatial distribution. Advances in key technologies capturing this shape-function relationship in vitro can bring the long-sought goal of real tissue engineering within reach.

In VOLUME-BIO I will develop a novel multi-material volumetric bioprinting technology for the precise generation of engineered tissues and organoids exhibiting physiological functions. Inspired by optical tomography, cell-laden hydrogels are sculpted into tissue analogues within seconds, upon exposure to bio-friendly 3D visible light fields. Tuneable light patterns control the local distribution of cells and, through orthogonal photo-chemical reactions, of key factors that guide stem cell fate, namely stiffness of the extracellular matrix and morphogenetic biochemical cues. The unprecedented ability to tune independently such parameters will also permit to build 3D platforms to study how architectural complexity impacts organoid maturation. This will provide a new tool to address the so far unanswered question of how much an engineered tissue needs to mimic Nature’s template to achieve physiological functionality.

Bringing together my expertise in engineering, bioprinting, materials design and stem cell biology, I will first test the potential and versatility of this novel volumetric technology by building from anatomical patient-specific images functional and centimetre-scale vascularized bone and bone marrow organoid supporting physiological-like hematopoiesis.

Finanzierungsplan

ERC-STG - Starting Grant

Gastgebende Einrichtung

UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Netto-EU-Beitrag
€ 1 554 634,14
Adresse
HEIDELBERGLAAN 100
3584 CX Utrecht
Niederlande

Auf der Karte ansehen

Region
West-Nederland Utrecht Utrecht
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 554 634,14

Begünstigte (2)