Descrizione del progetto
Comprendere e sfruttare al meglio le ultime innovazioni nello stoccaggio dell’energia
La crescente necessità nei confronti di concetti di stoccaggio dell’energia economici, scalabili e sostenibili ha condotto a una serie di materiali e tecnologie innovativi dalle prestazioni elevate. Una lista indicativa di queste soluzioni comprende batterie al sodio potenzialmente sicure ed efficienti, una migliore capacità degli elettrodi di carbonio nanoporosi, l’impiego di materiali ibridi e l’utilizzo dei cambiamenti nella struttura elettrochimica per risultati migliori. Il progetto MoMa-STOR, finanziato dall’UE, si propone di valutare queste modalità innovative e non coperte a livello tecnico per lo stoccaggio dell’energia e lo sviluppo della relativa base di materiali allo scopo di progettare la prossima generazione di dispositivi per questo tipo di stoccaggio.
Obiettivo
Sustainable energy generation by water, wind, and solar has reached in the EU a mature and economic state, but further growth to tackle the climate crisis has faltered because more economic, scalable and sustainable energy storage concepts are missing.
The groups of both PIs have a proven track record in this area but, interestingly they were able just recently to perform first experiments indicating big potential gains in performance. The Simon group identified a specific ion organization in nanoporous carbon electrodes leading to enhanced capacity. He also evidenced fast, new pseudocapacitive redox contribution in metal carbides of still unclear origin. The Antonietti group could not only build from oxidation stable noble carbons a 6.5 Volt supercapacitor, but also show that in those new device major storage peaks come from solvent structure changes. In another work, massive sub-potential deposition of Na-metal was observed is the Schottky transition layers of hybrid materials, thus making sodium batteries potentially save and efficient.
The general aim of MoMa-STOR is to address such fundamentally new, non-classical and non-technically covered modes of energy storage and to develop the related materials base for them, to design the next generation of energy storage devices.
These new modes include a) energy storage by desolvation and matrix change, b) reversible high energy bulk structure transition, and c) metal-metal and metal-semiconductor heterojunction interface effects.
New modes will be carefully analysed with advanced electrochemical techniques, including quartz crystal microbalance, differential electrochemical mass spectroscopy, combined with in situ X-ray and Raman spectroscopy for instance, to gain a precise physico-chemical picture of the operation principles. In operando high resolution electron microscopy and EELS will complete the molecular understanding of the processes.
Campo scientifico
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- natural sciencesphysical sciencesopticsmicroscopyelectron microscopy
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- natural sciencesphysical sciencesopticsspectroscopy
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-SyG - Synergy grantIstituzione ospitante
80539 Munchen
Germania