Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

A fully automated deep learning-based software for fast, robust and accurate detection and segmentation of tumours and metastasis

Projektbeschreibung

Verbesserung der Ergebnisse von Lungenkrebsbehandlungen dank eines Ansatzes zur automatisierten Tumorcharakterisierung

Eine schnelle und genaue Diagnose ist für die effektive Behandlung aller Krebsarten unerlässlich. Bedauerlicherweise sind für die fortgeschrittene Erkennung, Segmentierung und Charakterisierung von Tumoren arbeitsintensive manuelle oder teilweise manuelle Verfahren notwendig, was die Behandlungsgenauigkeit und die Überwachung des Ansprechens auf die Behandlung einschränkt. Das EU-finanzierte Projekt AUTO.DISTINCT wird eine bahnbrechende, vollautomatische Software zur schnellen, genauen, untersuchungsunabhängigen und reproduzierbaren Erkennung und volumetrischen Segmentierung von Lungentumoren und -metastasen anhand von CT-Bildern einführen, demonstrieren und bewerten. Die Arbeit des Projekts wird die Tumorcharakterisierung bei Personen mit Lungenkrebs radikal verbessern, indem sie die Erkennung von Läsionen anhand von CT-Aufnahmen verfeinert. Dies wird erhebliche Auswirkungen auf die Behandlungsergebnisse der Patientinnen und Patienten sowie auf die Genauigkeit der Strahlentherapie nach sich ziehen.

Ziel

The inaccuracy and inconsistency of state-of-the-art tumour volume detection and segmentation has an adverse influence on patient outcomes. Accurately determining the exact location and volume of tumours is a prerequisite for the detection, segmentation, characterisation and therapy response monitoring for any type of cancer. Today, tumour segmentation is performed manually or semi-automatically in a laborious and time-consuming process that exhibits low accuracy and inconsistency. This compromises quality of care by limiting the certainty of lesion detection on medical images, hindering the effectivity of radiotherapy and restricting the accuracy of treatment response monitoring.

In this ERC PoC project, we introduce fully automated software for fast, accurate, observer independent and reproducible detection and volumetric segmentation of (lung) tumours and metastases on CT images. Through a unique three-step approach, our software demonstrates superior speed, accuracy and robustness of tumour segmentation over both the state-of-the-art as well as published competing solutions for automated tumour segmentation. Hence, our software has the potential to drastically reduce the adverse impact that inaccurate tumour detection and segmentation currently has on (lung) cancer patient outcomes by: improving the detection of lesions on CT images, increasing the accuracy of radiotherapy treatment to reduce the occurrence of geometric misses, and advance the evaluation of tumour response to treatments through volumetric treatment monitoring.

In AUTO.DISTINCT we will provide technical and commercial proof-of-concept for our novel software. We will solve the remaining technical challenges and develop a user-friendly prototype that can be validated with end users. Moreover, we will develop a business strategy that incorporates all technical, commercial, IPR and regulatory aspects of our invention to ensure successful commercialisation.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2020-PoC

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

UNIVERSITEIT MAASTRICHT
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 150 000,00
Adresse
MINDERBROEDERSBERG 4
6200 MD Maastricht
Niederlande

Auf der Karte ansehen

Region
Zuid-Nederland Limburg (NL) Zuid-Limburg
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0