Descrizione del progetto
Il meglio di due sistemi
I sistemi di stoccaggio dell’energia ibrida provvisti di batterie di flusso redox e supercondensatori che funzionano come una squadra sono adatti unicamente ad applicazioni specifiche. Le reti energetiche moderne si basano sulle energie rinnovabili, ad esempio sull’energia solare, e sono caratterizzate da fluttuazioni superiori sia nella produzione dell’energia che nel consumo energetico. Al fine di assorbire i picchi di energia derivanti e gestire la crescente domanda per le energie rinnovabili, le reti moderne hanno bisogno di sistemi di stoccaggio più dinamici. Il progetto HyFlow, finanziato dall’UE, si concentrerà sui miglioramenti tecnologici ed ecologici dei componenti, dei sistemi di gestione e dell’interazione dei sistemi di stoccaggio dell’energia ibrida lungo l’intera catena di distribuzione. Combinando il meglio di due mondi, questa soluzione può sbloccare diverse applicazioni nella rete, migliorando la stabilità e diminuendo al contempo la dipendenza dai combustibili fossili.
Obiettivo
Developing low-cost energy storage systems is a central pillar for a secure, affordable and environmentally friendly energy supply based on renewable energies. A hybrid energy storage system (HESS) can be capable of providing multiple system services (e.g. frequency regulation or renewable balancing) at low cost and without the use of critical resources. Within HyFlow, an optimized HESS is designed consisting of a high-power vanadium redox flow battery (HP-VRFB), a supercapacitor (SC), advanced converter topologies and a highly flexible control system that allows adaptation to a variety of system environments. The system design enables modular long-term energy storage through HP-VRFB, while the SC as a power component ensures high load demands to be handled. The flexible Energy Management System (EMS) will be designed to perform high level of control and adaptability using computational analysis and hardware development. Within HyFlow, this innovative HESS is developed and validated on demonstrator-scale (5 kW scale) including sustainability analysis. The scope is to base the HP-VRFB on recycled vanadium and thereby reduce the environmental impact as well as the costs of the HESS. The consortium will build upon lab-scale and industrial application-scale experimental data to derive models and algorithms for the EMS development and the optimization of existing VRFB and SC components. An industry-scale demonstrator (300 kW scale) provides the possibility to test even the fastest grid-services like virtual inertia. Outputs of the project support the whole value-chain and life cycle of HESS by developing new materials and components and adding them together with an innovative EMS. The development of the above described HESS especially through the flexible EMS allows a plethora usage potentials to be assessed. This will lead to the grid integration of the HESS where the full potential of the flexibility can thoroughly be qualified and optimized for market requirements.
Campo scientifico
- natural scienceschemical scienceselectrochemistryelectric batteries
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systems
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energyhybrid energy
- natural scienceschemical sciencesinorganic chemistrytransition metals
- natural sciencesmathematicspure mathematicstopology
Parole chiave
Programma(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-LC-BAT-2020
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
84036 Landshut
Germania