Projektbeschreibung
Tiefe neuronale Netzwerke auf IoT-Geräten mit geringem Stromverbrauch zum Laufen bringen
Das Internet der Dinge und der rasante Siegeszug der künstlichen Intelligenz und des maschinellen Lernens haben vielfältige neue Herausforderungen entstehen lassen. Eine davon ist die Problematik, Deep-Learning-Algorithmen zwischen verschiedenen Hardwareplattformen auszuführen. Dieser Aspekt wurde bisher weitgehend mit Arbeitsabläufen auf der Grundlage von Zentraleinheiten (CPU) und Grafikprozessoren angegangen. Bei Geräten mit geringem Stromverbrauch wie etwa Smartphones, Uhren oder in Fahrzeugen, bei denen immer häufiger Deep-Learning-Inferenz zum Einsatz kommt, ist das jedoch nicht der Fall. Das EU-finanzierte Projekt hls4ml wird eine offene Softwarebibliothek entwickeln, die tiefe neuronale Netzwerke automatisch an elektronische Schaltkreise anpasst, indem hochwertige Syntheseinstrumente verwendet und die Ressourcennutzung reduziert werden.
Ziel
With Deep Learning becoming ubiquitous in our life, running Deep Learning algorithms in real time on an heterogeneous set of hardware platforms is a pressing need in many aspects of our society. While traditional workflows based on standard CPUs and GPUs are established, Deep Learning inference on low-power devices (e.g. cars, smart phones, watches, etc) is gaining more attention. Typically, this would require strong background in electronic engineering to convert a neural network into a Digital Signal Processor. We propose to develop a complete open-software library to automatically convert Deep Neural Networks to electronic circuits, using High Level Synthesis tools. With a large basis of potential applications (e.g. autonomous cars, medical devices, portable monitoring devices, custom electronics as in the real-time data processing system of large-scale scientific experiments, etc.), the hls4ml library would assists users by automatising the logic circuit design as well as by reducing resource utilisation while preserving accuracy.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Technik und Technologie Maschinenbau Fahrzeugbau Automobiltechnik autonome Fahrzeuge
- Technik und Technologie Elektrotechnik, Elektronik, Informationstechnik Elektrotechnik
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen Deep Learning
- Naturwissenschaften Informatik und Informationswissenschaften Datenwissenschaften Datenverarbeitung
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz Computational Intelligence
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-POC - Proof of Concept Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2020-PoC
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1211 GENEVE 23
Schweiz
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.