Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-10

High bitrate 1300 nm upgrade of the European standard single-mode fibre network

Ziel

UPGRADE aims to increase the capacity of the existing European Communications network, showing an evolutionary path from the networks of today to the pan-European network of tomorrow. The project plans to demonstrate that the present infrastructure, namely standard single mode fibre (SSMF), can be upgraded to carry high bit-rates by using optical soliton pulses at a wavelength of 1300 nm.
From the experiences of the project a scenario will be developed for the upgrading of SSMF links in the 1300 nm wavelength region.
To date the project has characterised some 16,000 km of standard SMF. The in-depth analysis of the capabilities of optical soliton transmission in the European network based upon this statistical database will provide a valuable tool for consideration in the mapping of the European communications backbone of the future.
The first field test planned between Kassel and the Hannover CeBIT will take place this year. This will be an all-optically amplified system as indicated in the schematic. As well as the semiconductor optical amplifiers, the project has developed a new DFB laser with internal modulator for RZ signal generation as well as 10 Gbit/s SDH-compatible terminal units.
The optical amplifiers are housed in specially design repeater modules which include all monitoring functions and the necessary software for integration with the management network. A photo of one of the repeater modules is shown below.
With the planned field trials, UPGRADE, will demonstrate in a most convincing way, in the eyes of the public, that a transparent European Communications Backbone is a viable goal which can be achieved.
The requirements of operational field trials impose stringent specifications on the new optoelectronic components being developed within the project. This accelerated development will help in finding ways to speed up time-to-market.
The concurrent development of management schemes for new all-optical components will assist in the introduction of these devices into present infrastructures.
By advocating time domain multiplexing in the optical domain UPGRADE will demonstrate that there is a viable alternative to the deployment of WDM thus offering network operators a choice of development scenarios.
Expected Impact
Demonstration of a scenario for upgrading SSMF links will open the possibility for a longer term operation of more then 90 million km of SSMF already deployed. A scenario for upgrading SSMF links at 1300 nm will complement alternative 1550 nm high-capacity options.
The possibility of long links (> 1000 km) will enable network operators to develop new architectures offering simplification, ease of use, ease of management, reduced maintenance and improved cost efficiency.
With an expected 15 million visitors at the EXPO, the UPGRADE link will demonstrate the advantages of co-operation throughout Europe in advancing the development of the pan-European telecommunications network.
Links to other projects developing similar management schemes should result in a harmonisation in TMN for high-speed networking across participating ACTS projects.

Main contributions to the programme objectives:
Main deliverables
Implemented optical soliton transmission at 1300 nm on standard single mode fibre (SSMF)
Contribution to the programme
Upgraded and extended life of existing single mode fibre networks
Technical Approach
To allow long haul transmission and high speeds, the consortium has chosen to implement optical soliton transmission at 1300 nm on SSMF. At 1550 nm, increased transmission speeds are hampered by the high group velocity dispersion (GVD) of SSMF, and soliton techniques in this window are limited by the typical European passive link spacing of 30-50 km. By contrast soliton techniques at 1300 nm benefit considerably from lower GVD where, in principle, a transmission capacity, similar to soliton systems on dispersion shifted fibre (DSF) at 1550 nm, can be achieved with a significantly reduced power budget, while still using SSMF. The higher attenuation at 1300 nm does not hinder this approach.
Soliton generation will be achieved using conventional diode laser technologies combined with new modulators and switches. Optical transmission will use new semi-conductor laser amplifiers capable of >30 dB fibre-to-fibre gain. Control of the soliton signal will be studied, and active filtering techniques will be developed and implemented as necessary. All-optical multiplexers and demultiplexers, optical clock recovery and in line add/drop will be studied. These components are essential for evolution to higher bit rates where electronic signal processing is at best extremely difficult. An important criterion is that it should be possible to implement the developed components in InP to produce rudimentary ICs.
The consortium will also develop a compatible TMN system for the operational network elements.
Summary of Trials
10 Gbit/s over 210 km in the network of Deutsche Telekom. This link will be used for live transmission during the 1997 CeBIT exhibition.
10 Gbit/s, 2 x 800 km fully-managed link between Madrid and Lisbon for demonstration at the 1998 EXPO. National Hosts will create a user interface so that the system may be loaded with applications. Collaboration of other ACTS projects in the trial is encouraged.
40 Gbit/s TDM laboratory link over 200 km using all-optical components developed in UPGRADE.
Key Issues
The following are critical to the success of UPGRADE.
Development of key optoelectronic components for integration into the UPGRADE system.
Provision of understanding of optical soliton transmission in an operational network.
Development of all-optical functions for use where electronic implementation is not possible.
Adaptation of firmware and hardware specific to RZ optical soliton transmission.
Encouragement of other projects to participate in demonstrations using the UPGRADE platform.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

Daten nicht verfügbar

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

CSC - Cost-sharing contracts

Koordinator

Philips Research Laboratories
EU-Beitrag
Keine Daten
Adresse
Prof. Holstlaan 4
5656 AA Eindhoven
Niederlande

Auf der Karte ansehen

Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Beteiligte (10)

Mein Booklet 0 0