Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-07

Subdifferentials and applications to generalized convexity

Obiettivo



Research objectives and content
In this project we will apply recently discovered techniques and results of the rapidly developing Subdifferential Theory to the study of the various classes of generalized convex functions. These classes, apart from their independent interest, usually meet a large field of applications in Microeconomics. In a very recent research work we have discovered an intrinsic property (i.e. cyclicity) of the subdifferentials of the generalized convex functions. This very promising tool will be used in order to establish duality schemes between the classes of generalized convex functions and corresponding classes of generalized monotone operators. In the same line of research we wish to clarify the exact relation between pseudoconvex and semistrictly quasiconvex functions, since both classes have important properties in Optimization theory. Asplund spaces, which enjoy an elegant dual geometric characterization, often provide the minimal framework of an adequate subdifferential theory. Our next objective will be to extend and clarify the exact geometric impact of the classes of Banach spaces in which a sufficient subdifferential theory exists for a given subdifferential. To this end, recent advances on the so-called reliable Banach spaces will be of use. Next, we shall study certain applications of the subdifferential theory in optimization problems with non-polyhedral constraints by refining the notion of coderivative and developing the relevant calculus. In the same spirit we will study properties of the second order subderivatives in connection to stability problems in Sensitivity Analysis.
Training content (objective, benefit and expected impact)
By working for a period of twenty four months in the research area of Non-smooth Analysis with a well-known expert of the field, the applicant wishes to improve his own expertise and go deeper into certain application areas of Economics, Control Theory and Sensitivity Analysis. The experience acquired in this period as much as the familiarity obtained with some new research techniques will form a valuable resource for the applicant to his future research career returning back to his country. Links with industry / industrial relevance (22)
No industrial relevance is directly involved on the proposal

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

Dati non disponibili

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

RGI - Research grants (individual fellowships)

Coordinatore

Not Available
Contributo UE
Nessun dato
Indirizzo


Mostra sulla mappa

Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0