CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-04-15

High-Resolution Plasma Etching in Semiconductor Technology : Fundamentals, Processing and Equipment

Ziel

It is widely recognised within the electronics industry that plasma etching will play a vital role in achieving submicron technology, both in silicon and IIIVsemiconductor systems. The objective of this project was to gain a better understanding, by applying suitable diagnostics methods, of the complex chemistry and physics involved in plasma etching so that the knowledge gained could be applied to the manufacture of improved equipment and to process realisation.
The objective of this project was to gain a better understanding, by applying suitable diagnostics methods, of the complex chemistry and physics involved in plasma etching so that the knowledge gained could be applied to the manufacture of improved equipment and to process realisation. The first part of the work was devoted to the development of measurement instrumentation and to equipment setup. In particular, an optical emission spectrometer and a quadrupole mass spectrometer were installed in a reaction chamber in order to detect the chemical species created when the etching reaction takes place. A reactive ion etching process was successfully established for a 0.5 micron structure size.
The first part of the work was devoted to the development of measurement instrumentation and to equipment setup. In particular, an optical emission spectrometer and a quadrupole mass spectrometer were installed in a reaction chamber in order to detect thechemical species created when the etching reaction takes place. A reactive ion etching process was successfully established for a 0.5micron structure size.
Exploitation
The study of the reaction kinetics paves the way for an improved etching process to be designed which can be utilised as a term of reference by other industries because of the widespread research work. Already, as a result of this project, an advanced three-chamber plasma etching machine has been produced by one of the partners. This equipment is capable of processing 200 mm2 wafers with ICs designed with 0.5micron structure size. A prototype was shown at the Produktronika 87Fair in Munich, and commercialisation is expected. However, additional and upto-date etching processes are still needed for full exploitation of the machine's capabilities.
The new optical spectrum analyser (including software) developed by Monolight is undergoing commercialisation.

Thema/Themen

Data not available

Aufforderung zur Vorschlagseinreichung

Data not available

Finanzierungsplan

Data not available

Koordinator

Fraunhofer-Gesellschaft zur Förderungder Angewandten Forschung e.V.
EU-Beitrag
Keine Daten
Adresse
Dillenburgerstrasse
14199 Berlin
Deutschland

Auf der Karte ansehen

Gesamtkosten
Keine Daten

Beteiligte (4)