Descrizione del progetto
Un metodo innovativo per l’immaginografia delle cellule tumorali resistenti ai farmaci
Spesso i trattamenti oncologici falliscono poiché una sottopopolazione di cellule in stato di farmaco-tolleranza persistente (DTP, Drug-Tolerant Persister) sviluppa resistenza ai farmaci. Il rilevamento delle DTP rappresenta una grande sfida tecnologica di importanza clinica. L’obiettivo principale del progetto REAP, finanziato dall’UE, è quello di sviluppare un metodo sensibile per la rilevazione specifica delle DTP. A tal fine, i ricercatori utilizzeranno nanoparticelle funzionalizzate per bersagliare ed etichettare tali cellule. Questo approccio, unito all’utilizzo di laser e rilevatori innovativi, contribuirà all’immaginografia in vivo dei tumori, nonché alla caratterizzazione in vitro delle DTP negli organoidi tumorali.
Obiettivo
Cancer treatment faces a major problem: it ultimately stops working for many patients because the tumor becomes resistant. The cellular origin of relapse is often linked to drug tolerant persister (DTP) cells, which survive treatment and can remain for years. Because of their scarcity and heterogeneity, the detection of DTP cells remains a technological challenge of enormous clinical importance. The objective of REAP is to develop two next generation multimodal imaging systems to reveal DTPs. A triple modal two-photon laser scanning optical coherence photoacoustic microscopy system will be built for the in vitro characterization of cancer organoids. Additionally, a dual-modality optical coherence photoacoustic tomography system will be implemented to visualize tumors in vivo in a mouse model. To enable greatly increased sensitivity and specificity, a new type of contrast agent based on biofunctionalized nanoparticles with tailor-made optical properties will be fabricated to specifically label DTPs. For improved imaging performance, several further technological advancements are targeted. Photoacoustic excitation will be realized using innovative microchip lasers addressing the needs for high-energy pulses, high-repetition rate, and multi-wavelength emission. To achieve the required resolution, novel photoacoustic detectors based on integrated optical micro-ring resonator technology will be developed with the potential to completely replace conventional piezoelectric ultrasound transducers. Furthermore, image acquisition speed will be increased by an order of magnitude with the help of an innovative laser source based on photonic integrated circuits at 780 nm. Finally, real-time data handling will be explored along with deep learning-based automatic analysis algorithms. The combined innovation in laser sources, detector technology, nanoparticles, and deep learning-based algorithms will create radically new imaging solutions reaching numerous applications.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- scienze naturaliscienze fisicheotticamicroscopia
- scienze mediche e della salutemedicina clinicaoncologia
- ingegneria e tecnologiananotecnologiananomateriali
- scienze naturaliscienze fisicheotticafisica dei laser
- scienze naturaliscienze fisicheacusticaecografia
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Programma(i)
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
1090 Wien
Austria