Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

A Lagrangian approach: from conservation laws to line-energy Ginzburg-Landau models

Descripción del proyecto

Un enfoque de representación lagrangiana para estudiar las ecuaciones diferenciales parciales no lineales

Las ecuaciones diferenciales parciales no lineales desempeñan un papel fundamental en las matemáticas y aparecen en varios modelos físicos y de ingeniería. Muchos de estos modelos presentan una falta de regularidad. El procesamiento de soluciones irregulares que pueden recopilar la dinámica singular de los procesos físicos conlleva grandes retos matemáticos, ya que la mayoría de las herramientas desarrolladas en entornos fluidos no son eficaces. El objetivo del proyecto Lagrangian, financiado por las Acciones Marie Skłodowska-Curie, es ampliar el enfoque de representación lagrangiana recientemente introducido para leyes de conservación no lineales al estudio de soluciones débiles multidimensionales y no entrópicas. El equipo del proyecto empleará técnicas de representación de Lagrange para abordar preguntas complejas relacionadas con el análisis de las leyes de conservación en la teoría del control, que también tienen aplicación en modelos mixtos de flujo de tráfico.

Objetivo

The core of this project is the Lagrangian Representation (LR) and the interplay of this novel Geometric Measure Theory (GMT) tool with the study of 1st-order, nonlinear Partial Differential Equations (PDEs). Several nonlinear PDEs arise in important models from physics, engineering, biology and chemistry. The lack of regularity is an intrinsic feature of these models and reflects actual properties of the underlying real-world systems, as for example shock waves in fluid dynamics or traffic flow. Handling irregular solutions capable to capture the peculiar features of these systems poses great mathematical challenges since most of the tools developed in the smooth setting (specifically the method of characteristics) cannot be employed in this context. In the first line of research of the project I propose a new and innovative extension and exploitation, for the multidimensional case and for non entropic weak solutions, of the recently introduced LR for nonlinear conservation laws. Such a (characteristic-like) representation has proved to be a powerful technique to analyze the geometric structure and the regularity of solutions to nonlinear PDEs. In the second line of research, I will employ the LR to investigate fine properties of the 2d eikonal equation in the context of a surprisingly related celebrated conjecture in the calculus of variations by Aviles-Giga. In the last line of research, I will exploit the LR techniques to address challenging questions in the analysis of nonlinear conservation laws from the point of view of control theory, concerning controllability issues and necessary conditions for optimality, which have also application in recent mixed models of traffic flow (involving for example E-scooters in addition to cars). The Marie Skłodowska-Curie fellowship and the consequent close collaboration with Prof. Ancona and the top research group in PDEs and GMT of University of Padova are a great and unique opportunity of fulfillment of this project.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo.
La clasificación de este proyecto ha sido validada por su equipo.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2020

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITA DEGLI STUDI DI PADOVA
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 171 473,28
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 171 473,28
Mi folleto 0 0