Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

A Lagrangian approach: from conservation laws to line-energy Ginzburg-Landau models

Descrizione del progetto

Un approccio di rappresentazione lagrangiana allo studio delle equazioni differenziali alle derivate parziali non lineari

Le equazioni differenziali alle derivate parziali non lineari svolgono un ruolo importante in matematica e si presentano in diversi modelli fisici e ingegneristici, molti dei quali mostrano una mancanza di regolarità. La gestione di soluzioni irregolari in grado di catturare le dinamiche peculiari dei processi fisici pone grandi sfide matematiche: la maggior parte degli strumenti sviluppati in ambienti regolari sono inefficaci. Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto Lagrangian si propone di estendere l’approccio di rappresentazione lagrangiana recentemente introdotto per le leggi di conservazione non lineari allo studio di soluzioni deboli multidimensionali e non entropiche. Il progetto sfrutterà inoltre le tecniche di rappresentazione lagrangiana per affrontare questioni impegnative relativamente all’analisi delle leggi di conservazione nella teoria del controllo, applicate anche nei modelli misti del flusso di traffico.

Obiettivo

The core of this project is the Lagrangian Representation (LR) and the interplay of this novel Geometric Measure Theory (GMT) tool with the study of 1st-order, nonlinear Partial Differential Equations (PDEs). Several nonlinear PDEs arise in important models from physics, engineering, biology and chemistry. The lack of regularity is an intrinsic feature of these models and reflects actual properties of the underlying real-world systems, as for example shock waves in fluid dynamics or traffic flow. Handling irregular solutions capable to capture the peculiar features of these systems poses great mathematical challenges since most of the tools developed in the smooth setting (specifically the method of characteristics) cannot be employed in this context. In the first line of research of the project I propose a new and innovative extension and exploitation, for the multidimensional case and for non entropic weak solutions, of the recently introduced LR for nonlinear conservation laws. Such a (characteristic-like) representation has proved to be a powerful technique to analyze the geometric structure and the regularity of solutions to nonlinear PDEs. In the second line of research, I will employ the LR to investigate fine properties of the 2d eikonal equation in the context of a surprisingly related celebrated conjecture in the calculus of variations by Aviles-Giga. In the last line of research, I will exploit the LR techniques to address challenging questions in the analysis of nonlinear conservation laws from the point of view of control theory, concerning controllability issues and necessary conditions for optimality, which have also application in recent mixed models of traffic flow (involving for example E-scooters in addition to cars). The Marie Skłodowska-Curie fellowship and the consequent close collaboration with Prof. Ancona and the top research group in PDEs and GMT of University of Padova are a great and unique opportunity of fulfillment of this project.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata dal team del progetto.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2020

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITA DEGLI STUDI DI PADOVA
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 171 473,28
Indirizzo
VIA 8 FEBBRAIO 2
35122 PADOVA
Italia

Mostra sulla mappa

Regione
Nord-Est Veneto Padova
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 171 473,28
Il mio fascicolo 0 0