Projektbeschreibung
Algorithmen für eine effektive Schlaganfallrehabilitation
Im Jahr 2015 allein wurden in Europa 600 000 Schlaganfälle verzeichnet. Schlaganfälle stellen eines der dringendsten Gesundheitsprobleme in Europa dar und erfordern eine strenge Rehabilitation. Bedauerlicherweise fehlt es derzeit allerdings an Methoden, um die Fortschritte der Betroffenen und die Behandlungsergebnisse effektiv zu messen. Das EU-finanzierte Projekt MAESTRO wird Algorithmen entwickeln, mit denen es möglich sein wird, die Wirksamkeit der Rehabilitation mithilfe von Wearables (mobilen Anwendungen und Geräten im Internet der Dinge) zu bewerten und zu optimieren. Das Ergebnis werden innovative neue Verfahren des maschinellen Lernens (tiefes Lernen) sein, die den Weg dafür ebnen werden, besonders komplexe Daten automatisch zu klassifizieren und entscheidende Informationen aus Datensätzen auf nie dagewesene Weise zu extrahieren, sodass Behandelnde, Betroffene und Pflegekräfte gruppenspezifisches Feedback erhalten können. MAESTRO ist vollständig an den Zielen des Programms Horizont 2020 im Bereich III – Digitalisierung, Forschung und Innovation – ausgerichtet.
Ziel
Stroke is a first-order medical problem (about 600,000 strokes occurred in the EU in 2015), in which rehabilitation is critical. Currently, there are no reliable systems to monitor the patient adherence to this rehabilitation, nor its effectiveness. Combining the ER experience on biosensors and gamification, the expertise on outlier detection and machine learning of IMDEA Networks, and the knowledge on deep learning applied to medicine of the AI Lab at Brown University, in MAESTRO, we will develop algorithms capable of determining rehabilitation adherence and effectiveness by using wearables. This will optimize rehabilitation and forecast recovery by providing information to neurologists and feedback to patients and caregivers. MAESTRO aligns with the H2020 goals in Area III (digitization, research and innovation) as well as health, demographic change, and wellbeing.
MAESTRO aims at recruiting 50 patients from Rhode Island Hospital for 4 months in the first of three development cycles. Mobile applications, IoT devices and questionnaires will be used in the first of the three cycles. This is viable since we will use the infrastructure and connections of an existing stroke project on-site.
The innovation in MAESTRO lays in the development of software solutions to monitor the rehabilitation of post-stroke patients remotely and passively using off-the-shelf hardware and gamification. The methods employed in MAESTRO, particularly deep learning, permit the automated classification of extremely complex data, allowing scientists to extract important information from data sets that would be unmanageable otherwise.
MAESTRO is a unique scientific advance because it will provide doctors, patients and caregivers, group-specific levels of feedback. In addition, the algorithms specifically developed within the project can be the bases of novel developments with different goals, for example translation to clinical practice, or expansion to other neurodegenerative diseases.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Medizin- und Gesundheitswissenschaften Klinische Medizin Physiotherapie
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen Deep Learning
- Medizin- und Gesundheitswissenschaften Grundlagenmedizin Neurologie Schlaganfall
- Technik und Technologie Medizintechnik tragbare Medizintechnik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2020
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
28918 Leganes (Madrid)
Spanien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.