Projektbeschreibung
Die Quillen-Vermutung beweisen
Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt QUILCON verfolgt das Ziel, die 1978 aufgestellte Quillen-Untergruppen-Poset-Vermutung zu beweisen. Die Vermutung besagt, dass für eine endliche Gruppe G und eine Primzahl p, wenn die Poset der nichttrivialen p-Untergruppen von G kontrahierbar ist, G eine nichttriviale normale p-Untergruppe aufweist. Um diese Vermutung zu beweisen, wird das Projekt Instrumente aus der höheren Kategorientheorie und der kombinatorischen Homotopie einsetzen. Die Vermutung ist wichtig, um die Theorie der endlichen Gruppen, die algebraische Topologie und die Kombinatorik miteinander zu verknüpfen.
Ziel
Quillen's Conjecture
The ultimate goal of this project it to prove the Quillen subgroup-poset conjecture, open since 1978. The conjecture is easy to state: for G a finite group and p a prime number, if the poset of non-trivial p-subgroups of G is contractible, then G has a non-trivial normal p-subgroup. The novel approach of this proposal is to prove Quillen's conjecture by dealing with it in a more abstract categorical setting of certain cartesian fibrations of 2-categories over the 2-category of finite groups, where tools from higher category theory and 'homotopy combinatorics' can be used. Carrying out this plan thus requires generalising relevant parts of the classical theory from posets to certain fibred categories. For one of the main tools, Möbius inversion, this theory has already been developed by the applicant. The conjecture is important for the interface between finite group theory, algebraic topology, and combinatorics, and the tools developed promise to be useful to further these interactions. The research will be carried out at the University of Copenhagen, at one of the strongest topology groups in the world, supervised by Jesper Møller, one of the leading experts on Quillen's conjecture. The applicant, Joachim Kock, has ample expertise in category theory applied to algebraic topology and combinatorics. By applying his skills to solve an important open problem, he will fill a gap in his research profile and take the step from high-quality to top-quality research.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Topologie algebraische Topologie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Kombinatorik
- Naturwissenschaften Mathematik reine Mathematik Arithmetik Primzahlen
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2020
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
1165 KOBENHAVN
Dänemark
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.