Projektbeschreibung
Die qualitativen Eigenschaften von Wellen in Flüssigkeiten analysieren
Die Fähigkeit, das Verhalten von Wellen in Flüssigkeiten vorherzusagen, ist eine der größten Herausforderungen in der Mathematik. Das EU-finanzierte Projekt HamDyWWa zielt darauf ab, hier Änderungen zu bewirken. Zu diesem Zweck werden sowohl Kolmogorov-Arnold-Moser- als auch Normalformmethoden für partielle Differentialgleichungen in höherdimensionalen Räumen entwickelt. Ein Hauptaugenmerk wird auf oszillierenden Bewegungen und Stabilitätseigenschaften für partielle Differentialgleichungen der Strömungsdynamik und Quantenmechanik liegen, wobei Verfahren aus dem Kolmogorov-Arnold-Moser-Theorem, der Normalformtheorie sowie der harmonischen und mikro-lokalen Analyse verwendet werden.
Ziel
KAM and normal form methods are very powerful tools for analyzing the dynamics of nearly integrable finite dimensional Hamiltonian systems. In the last decades, the extension of these methods to infinite dimensional systems, like Hamiltonian PDEs (partial differential equations), has attracted the interest of many outstanding mathematicians like Bourgain, Craig, Kuksin, Wayne and many others. These techniques provide some tools for describing the phase space of nearly integrable PDEs. More precisely they give a way to construct special global solutions (like periodic and quasi-periodic solutions) and to analyze stability issues close to equilibria or close to special solutions (like solitons). In the last seven years, I developed new methods for proving the existence of quasi-periodic solutions of quasi-linear, one-dimensional PDEs. This is an important step towards treating many of the fundamental equations from physics since most of these equations are quasi-linear. In particular, this is the case for the equations in fluid dynamics, the water waves equation being a prominent example. These novel techniques are based on a combination of pseudo-differential and para-differential calculus, with the classical perturbative techniques and they allowed to make significant advances of the KAM and normal form theory for one-dimensional PDEs. On the other hand, many challenging problems remain open and the purpose of this proposal is to investigate some of them. The main goal of this project is to develop KAM and normal form methods for PDEs in higher space dimension, with a particular focus on equations arising from fluid dynamics, like Euler, Navier-Stokes and water waves equations. By extending the novel approach, developed for PDEs in one space dimension, I have already obtained some preliminary results on PDEs in higher space dimension (like the Euler equation in 3d), which makes me confident that the proposed project is feasible.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik mathematische Analyse Differentialgleichungen partielle Differentialgleichungen
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2021-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
20122 Milano
Italien
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.