Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Isolation, observation and quantification of mechanisms responsible for hydrogen embrittlement by TRITIum based microMEchanics

Projektbeschreibung

Studie zu den Gründen, warum Wasserstoff widerstandsfähige Metalle brüchig werden lässt

Wasserstoff ist ein entscheidender Bestandteil der sauberen Energiewende. Sichere und kosteneffiziente Speicher- und Transportmethoden sind unerlässlich, gestalten sich jedoch schwierig, da Metalle ihre Festigkeit ändern, wenn sie mit Wasserstoff in Kontakt kommen. Mit Hilfe hochauflösender Methoden, die das Wasserstoffisotop Tritium einbeziehen, will das EU-finanzierte Projekt TRITIME besser verstehen, wie und warum die Duktilität von Metallen aufgrund der Wasserstoffaufnahme verringert wird. Im Rahmen von TRITIME werden mechanische Tests an Proben durchgeführt, die nur wenige Kristalldefekte enthalten, um dieses Phänomen, das als Wasserstoffversprödung bezeichnet wird, zu isolieren und besser zu beobachten.

Ziel

Hydrogen is an indispensable element in the energy transition and expected to be key for decarburization of the European society. Hydrogen embrittlement – recognized and in focus of materials science since almost 150 years – still causes catastrophic failure until today. It is well-understood that all mechanisms of hydrogen embrittlement materialize at the scale of individual defects, such as dislocations, grain- and phase-boundaries. But we are still missing a correlative measurement of the mechanical behaviour of individual defects and the local hydrogen content, which is urgently needed to assess the occurrence, importance and magnitude of mechanisms playing a role during hydrogen embrittlement. In aid of this, TRITIME for the first time facilitates the isolation, observation and quantification of hydrogen embrittlement mechanisms by TRITIum based microMEchanics. The mechanisms of hydrogen embrittlement will be isolated by small scale mechanical testing on samples containing only a few crystal defects. The defect properties are observed and measured by in situ micromechanical experiments in the scanning electron microscope and at synchrotron beamlines. Simultaneously, TRITIME will monitor the local hydrogen content by observing the decay of tritium with high spatial resolution, for which a unique tool will be developed. In addition, post mortem analysis using atom probe tomography and secondary ion mass spectroscopy take advantage of the reduced mobility of tritium. TRITIME will provide unprecedented insights into the local hydrogen content of newly formed slip bands, mobile and immobile dislocations and fracture surfaces. Consequently, if successful, TRITIME will obtain a mechanism-based, quantitative understanding of HEDE, HELP and their interplay. In doing so, TRITIME sets the base for a mechanism-based optimization of microstructures used in distribution and storage of hydrogen and, therefore, is an indispensable tool towards Europe`s hydrogen society.

Programm/Programme

Gastgebende Einrichtung

KARLSRUHER INSTITUT FUER TECHNOLOGIE
Netto-EU-Beitrag
€ 1 994 136,00
Adresse
KAISERSTRASSE 12
76131 Karlsruhe
Deutschland

Auf der Karte ansehen

Region
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 994 136,00

Begünstigte (1)