Cel In recent years, worldwide efforts to tackle climate change have resulted in immense momentum towards renewable energy research. Despite renewables (i.e. photovoltaic) achieving cost parity vs. fossil fuels (32-44$/MWh vs. 44-152$/MWh), implementation remains limited. One persistent challenge is intermittency (i.e. inconsistent energy supply by seasonal/daily cycles). Amongst promising energy storage methods (i.e. Li-ion batteries, hydrostatic, etc.), electrocatalytically-generated hydrocarbons pose numerous advantages. They are 1) non-polluting, 2) benign aqueous compositions, 3) earth-abundant electrode materials, and 4) carbon-neutrality / carbon-negative via carbon dioxide reduction. However, there is still limited control over the gaseous pathways in gas-involving electrocatalysis. This limitation negatively influences both reactant and product flux, affecting conversion efficiency. From a physical perspective, electrocatalysis is a multi-phase process where (liquid) immersed electrodes (solid) interact with reactants/products (gas). Integration of concepts in wettability is thus beneficial. Surface superaerophilicity refers to its strong affinity (-Super) for air/gases (-Aerophilicity). With superaerophilicity, microscopic gas-layers on surfaces (i.e. plastrons) provide highly efficient reactant/product gas transport pathways. In this project, I will investigate design principles for “Superwettability-enhanced Electrocatalysis (SuperElectro)”. The primary goal is to decouple wettability and electrocatalytic activity. Achievements in electrocatalytic-enhancements (i.e. current density, conversion efficiency, etc.) will thus be universal. The choice of electrode catalyst becomes independent from wettability as plastrons provide alternative product and reactant pathways. Electrocatalysis is vital towards a sustainable adoption of renewable energy technologies. The success of this work impacts the future of our energy industries and green-friendly societies. Dziedzina nauki inżynieria i technologiainżynieria śodowiskaenergetyka i paliwaenergia odnawialnanauki przyrodniczenauki chemicznekatalizaelektrokatalizanauki przyrodniczenauki chemicznechemia organicznawęglowodorynauki przyrodniczenauki o Ziemi i pokrewne nauki o środowiskunauki o atmosferzeklimatologiazmiany klimatu Program(-y) HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme Temat(-y) HORIZON-MSCA-2021-PF-01-01 - MSCA Postdoctoral Fellowships 2021 Zaproszenie do składania wniosków HORIZON-MSCA-2021-PF-01 Zobacz inne projekty w ramach tego zaproszenia System finansowania HORIZON-AG-UN - HORIZON Unit Grant Koordynator AALTO KORKEAKOULUSAATIO SR Wkład UE netto € 199 694,40 Adres Otakaari 1 02150 Espoo Finlandia Zobacz na mapie Region Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa Rodzaj działalności Higher or Secondary Education Establishments Linki Kontakt z organizacją Opens in new window Strona internetowa Opens in new window Uczestnictwo w unijnych programach w zakresie badań i innowacji Opens in new window sieć współpracy HORIZON Opens in new window Wkład UE Brak danych