Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Learning network for Advanced Behavioural Data Analysis

Opis projektu

Optymalizacja analizy danych z czujników ubieralnych pod kątem aktywności i braku aktywności fizycznej

Coraz więcej uwagi poświęca się istotnym skutkom zdrowotnym połączenia aktywności fizycznej, siedzącego trybu życia i snu w ciągu doby. Czujniki ubieralne dostarczają bogatych danych na temat tych zachowań związanych z ruchem przez całą dobę, siedem dni w tygodniu. Potrzebne są jednak nowe techniki analityczne, które pozwolą na szczegółowy wgląd w powiązania między nimi. Przy wsparciu programu działania „Maria Skłodowska-Curie” projekt LABDA pozwoli przeszkolić 13 naukowców zajmujących się zdrowiem publicznym, aby ostatecznie opracować otwartoźródłowy zestaw narzędzi składający się z innowacyjnych metod analitycznych. Wyniki prowadzonych przez doktorantów badań zaowocują ulepszonymi, spersonalizowanymi zaleceniami dotyczącymi zdrowia publicznego oraz lepszymi osobistymi informacjami zwrotnymi z urządzeń ubieralnych obejmującymi całodobowych zachowań związanych z ruchem.

Cel

BACKGROUND Recently, there has been a paradigm shift from the isolated focus on the health impact of single behaviours (physical activity, sedentary behaviour, sleep) to the combined health effects of 24/7 movement behaviours. Technological advancements have led to wearable sensors providing rich time-series. Such large-scale data require novel analysis methods to provide detailed insight into the links between multidimensional 24/7 movement behaviour and health, potential relevant subgroups, and relevant behavioural characteristics to target in interventions. CONSORTIUM In LABDA, leading researchers in advanced movement behaviour data analysis at the intersection of data science, method development, epidemiology, public health, and wearable technology are brought together to address this challenge. AIM: To train a new generation of creative and innovative public health researchers with strong analytical and data science skills, and a deep understanding of all aspects of wearable sensor data analysis, that are able to develop innovative analysis methods and apply these in various contexts. WORK PLAN Via training-through-research, 13 doctoral fellows establish novel methods for advanced 24/7 movement behaviour data analysis and assess the added value of linking multimodal data. They develop a joint taxonomy to enable interoperability and data harmonisation. Results are combined in an open source LABDA toolbox of advanced analysis methods, including a decision tree to guide researchers and other users to the optimal method for their (research) question. IMPACT The open source toolbox of advanced analysis methods will lead to optimised, tailored public health recommendations and improved personal wearable feedback concerning 24/7 movement behaviour. After the project, LABDA fellows will be in an excellent position to pursue careers in academia (epidemiology, data science), commercial business (wearable technology, consultancy), or government (public health policy).

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Koordynator

STICHTING AMSTERDAM UMC
Wkład UE netto
€ 823 111,20
Koszt całkowity
Brak danych

Uczestnicy (5)

Partnerzy (14)