Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Extremal Combinatorics and Circuit Complexity

Projektbeschreibung

Fortschritte in der rechnerischen Komplexitätstheorie durch extreme Kombinatorik

In der Komplexitätstheorie werden Rechenprobleme auf der Grundlage ihrer logischen Schwierigkeit klassifiziert. Mir Unterstützung der Marie-Skłodowska-Curie-Maßnahmen wird im Projekt EXCICO eine bedeutenden Herausforderung in der Komplexitätstheorie behandelt: das Aufstellen nichtlinearer unterer Schranken für explizite boolesche Funktionen. Durch die Betrachtung der Schaltungskomplexität aus der Perspektive der extremen Kombinatorik – einem Bereich der Kombinatorik, in dem Objekte unter verschiedenen Einschränkungen untersucht werden – hofft das EXCICO-Team, eine systematische Methodik zur Lösung von Komplexitätsproblemen aufzustellen. Der Schwerpunkt der Forschung liegt insbesondere auf unteren Schranken für Schaltungen der Tiefe 3, um klare untere Schranken für die Majoritätsfunktion zu beweisen. Das Team plant auch, die Verfahren aus dem jüngsten Durchbruch zum Delta-Lemma zu erweitern und sie auf Formeln der konjunktiven Normalform und ihre befriedigenden Zuordnungen anzuwenden.

Ziel

Computational complexity theory is the systematic study of computational problems in order to classify them in terms of their inherent logical hardness. Several decades of research have not only given rise to important understanding of limits of computation, but have also developed algorithms which constitute a crucial part of modern life. A formidable challenge in complexity theory is to show non-linear lower bounds for an explicit Boolean function. Our project is motivated by this fundamental problem and in fact we will approach several such questions motivated by understanding the complexity of explicit Boolean functions. Our main objective look at circuit complexity through the lens of extremal combinatorics, a rich and vibrant of branch of combinatorics which studies objects satisfying various constraints. Therefore we aim to develop a systematic methodology which adopts tools of extremal combinatorics to tackle complexity problems. More concretely we attack the problem of lower bounds for depth-3 circuits and specifically attempt to prove sharp lower bounds for the Majority function thus breaking a barrier in this area. We will further extend the techniques used in recent breakthrough on the Sunflower Conjecture and apply it to CNF formula and the structure of their satisfying assignments. We will our new insights on the structure of satisfying assignments to develop new improved algorithms for the satisfiability problem (SAT).

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) HORIZON-MSCA-2022-PF-01

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

MATEMATICKY USTAV AV CR V.V.I.
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 180 421,44
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Partner (1)

Mein Booklet 0 0